DOI QR코드

DOI QR Code

알코올계 촉매 슬러리를 활용한 바 코팅으로 제조된 PTFE 전극의 형성 및 특성 조사

Characterization of PTFE Electrode Made by Bar-Coating Method Using Alcohol-Based Catalyst Slurry

  • 정현승 (광주과학기술원 융합기술원 융합기술학제학부 에너지프로그램) ;
  • 김도형 (광주과학기술원 융합기술원 융합기술학제학부 에너지프로그램) ;
  • 박찬호 (광주과학기술원 융합기술원 융합기술학제학부 에너지프로그램)
  • JUNG, HYEON SEUNG (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • KIM, DO-HYUNG (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • PAK, CHANHO (Graduate Program of Energy Technology, School of Integrated Technology, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
  • 투고 : 2020.03.27
  • 심사 : 2020.06.30
  • 발행 : 2020.06.30

초록

Alcohol-based solvents including ethanol (EtOH) and tert-butyl alcohol (TBA) are investigated instead of isopropanol (IPA), which is a common solvent for polytetrafluoroethylene (PTFE), as an alternative solvent for preparing the catalyst slurry with PTFE binder. As a result, the performance at 0.2 A/㎠ from the single cells from using catalyst slurries based on EtOH and TBA showed very similar value to that from the slurry using IPA, which implies the EtOH and TBA can be used as a solvent for the catalyst slurry. It is also confirmed by the very close values of the total resistance of the membrane electrode assemblies from the slurries using different solvents. In the energy dispersive spectrometry (EDS) image, the shape of crack and dispersion of PTFE are changed according to the vapor pressure of the solvent.

키워드

참고문헌

  1. M. S. Kondratenko, M. O. Gallyamov, and A. R. Khokholv, "Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy", Int. J. Hydrogen Energy, Vol. 37, No. 3, 2012, pp 2596-2602, doi: https://doi.org/10.1016/j.ijhydene.2011.10.087.
  2. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, "Approaches and recent development of polymer electrolyte membranes for fuel cells operating above $100\;^{\circ}C$", Chem. Mater., Vol. 15, No. 26, 2003, pp. 4896-4915, doi: https://doi.org/10.1021/cm0310519.
  3. M. Li and K. Scott, "A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications", Electrochim. Acta, Vol. 55, No. 6, 2010, pp. 2123-2128, doi: https://doi.org/10.1016/j.electacta.2009.11.044.
  4. H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, and B. G. Pollet, "Performance investigation of membrane electrode assemblies for high temperature proton exchange membrane fuel cell", J. Power Energy Eng. Vol. 1, No. 5, 2013, pp. 95-100, doi: https://doi.org/10.4236/jpee.2013.15016.
  5. J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, and J. A. Aguilar, "Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC", J. Membr. Sci., Vol. 306, No. 1-2, 2007, pp. 47-55, doi: https://doi.org/10.1016/j.memsci.2007.08.028.
  6. C. Wannek, W. Lehnert, and J. Mergel, "Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers", J. Power Sources, Vol. 192, No. 2, 2009, pp. 258-266, doi: https://doi.org/10.1016/j.jpowsour.2009.03.051.
  7. W. Wang, S. Chen, J. Li, and W. Wang, "Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell", Int. J. Hydrogen Energy, Vol. 40, No. 13, 2015, pp. 4649-4658, doi: https://doi.org/10.1016/j.ijhydene.2015.02.027.
  8. T. D. Myles, S. Kim, R. Maric, and W. E. Mustain, "Application of a coated film catalyst layer model to a high temperature polymer electrolyte membrane fuel cell with low catalyst loading produced by reactive spray deposition technology", Catalysts, Vol. 5, No. 4, 2015, pp 1673-1691, doi: https://doi.org/10.3390/catal5041673.
  9. M. Bodner, H. R. García, T. Steenberg, C. Terkelsen, S. M. Alfaro, G. S. Avcioglu, A. Vassiliev, S. Primdahl, and H. A. Hijuler, "Enabling industrial production of electrodes by use of slot-die coating for HT-PEM fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 25, 2019, pp. 12793-12801, doi: https://doi.org/10.1016/j.ijhydene.2018.11.091.
  10. E. Lee, D. H. Kim, and C. Pak, "Effects of cathode catalyst layer fabrication parameters on the performance of high-temperature polymer electrolyte membrane fuel cells", Appl. Surf. Sci., Vol. 510, 2020, pp. 145461, doi: https://doi.org/10.1016/j.apsusc.2020.145461.
  11. E. Lee, D. H. Kim, and C. Pak, "Effect of inner catalyst layer with PTFE binder on performance of high temperature polymer electrolyte membrane fuel cells", ECS Trans., Vol. 92, No. 8, 2019, pp. 741-748, doi: https://doi.org/10.1149/09208.0741ecst.
  12. F. Mack, T, Morawietz, R. Hiesgen, D. Kramer, V. Gogel, and R. Zeis, "Influence of the polytetrafluoroethylene content on the performance of high-temperature polymer electrolyte membrane fuel cell electrodes", Int. J. Hydrogen Energy, Vol. 41, No. 18, 2016, pp. 7475-7483, doi: https://doi.org/10.1016/j.ijhydene.2016.02.156.
  13. F. Mack, T. Morawietz, R. Hiesgen, D. Kramer, and R. Zeis, "PTFE distribution in high-temperature PEM electrodes and its effect on the cell performance", ECS Trans., Vol. 58, 2013, pp. 881-888, doi: https://doi.org/10.1149/05801.0881ecst.
  14. G. Jeong, M. J. Kim, J. Y. Han, H. J. Kim, Y. G. Shul, and E. Cho, "High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells", J. Power Sources, Vol. 323, 2016, pp. 142-146, doi: https://doi.org/10.1016/j.jpowsour.2016.05.042.
  15. S. Kim, T. D. Myles, H. R. Kunz, D. W. Kwak, Y. Wang, and R. Maric, "The effect of binder content on the performance of a high temperature polymer electrolyte membrane fuel cell produced with reactive spray deposition technology", Electrochim. Acta, Vol. 177, 2015, pp. 190-200, doi: https://doi.org/10.1016/j.electacta.2015.02.025.
  16. C. Reichardt and T. Welton, "Solvents and solvent effects in organic chemistry", 4th ed, Wiley-VCH Publishers, USA, 2011, pp. 389-469, doi: https://doi.org/10.1002/9783527632220.
  17. J. Halter, N. Bevilacqua, R. Zeis, T. J. Schmidt, and F. N. Buchi, "The impact of the catalyst layer structure on phosphoric acid migration in HT-PEFC - An operando X-ray tomographic microscopy study", J. Electroanal. Chem., Vol. 859, 2020, pp. 113832, doi: https://doi.org/10.1016/j.jelechem.2020.113832.