참고문헌
-
C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Bohm, S. Jatta, F. Kuppers, P. Meissner & M. Amann. (2011). Surface micromachined tunable 1.55
${\mu}m$ -VCSEL with 102 nm continuous single-mode tuning. Optics Express, 19(18), 17336-17343. DOI : 10.1364/OE.19.017336 - V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin & A. Cable. (2012). High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. Electronics Letters, 48(14), 867-869. DOI : 10.1049/el.2012.1552
- K. Iga. (2000). Surface-emitting laser-its birth and generation of new optoelectronics field. IEEE Journal of Selected Topics in Quantum Electronics, 6(6), 1201-1215. DOI : 10.1109/2944.902168
- G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta & A. Y. Cho. (1991). Performance of Gain-Guided Surface Emitting Lasers with Semiconductor Distributed Bragg Reflector. IEEE Journal of Quantum Electronics, 27(6), 1377-1385. DOI : 10.1109/3.89954
- J. H. Ser, Y. G. Ju, J. H. Shin & Y. H. Lee. (1995). Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings. Applied Physics Letters, 66(21), 2769-2771. DOI : 10.1063/1.113469
-
T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto & K. Kasahara. (1995). Complete polarization control of 8
${\times}$ 8 vertical-cavity surface-emitting laser matrix arrays. Applied Physics Letters, 66(8), 908-910. DOI : 10.1063/1.113593 - B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin & J. L. Pelouard. (1999). High-Q wet etched GaAs microdisks containing InAs quantum boxes. Applied Physics Letters, 75(13), 1908-1910. DOI : 10.1063/1.124894
- M. Fujita, R. Ushigome & T. Baba. (2001). Large Spontaneous Emission Factor of 0.1 in a Microdisk Injection Laser. IEEE Photonics Technology Letters, 13(5), 403-405. DOI : 10.1109/68.920731
- R. Hristu, S. G. Stanciu, S. J. Wu, F.-J. Kao, O'D. Kwon & G. A. Stanciu. (2011). Optical beam induced current microscopy of photonic quantum ring lasers. Applied Physics B, 103, 653-657. DOI : 10.1007/s00340-011-4441-3
- D. K. Kim, Y. C. Kim, M. H. Sheen & O'D. Kwon. (2009). Spatiotemporal dynamics in Rayleigh band of photonic quantum ring laser. Optical and Quantum Electronics, 41, 913-919. DOI : 10.1007/s11082-010-9405-z
- O'D. Kwon, D. K. Kim, J. H. Yoon, Y. C. Kim, Y. H. Jang & M. H. Shin. (2009). Photonic quantum ring laser of 3D whispering cave mode. Microelectronics Journal, 40(3), 570-573. DOI : 10.1016/j.mejo.2008.06.092
- O. D. Kwon. (2018). A new spectroscopy based upon 3D photonic quantum ring lasers for non-invasive and portable brain/heart disease diagnostic techniques. Phys. Lett, 81, 580-582. DOI : 10.21767/2349-3917-C1-002
-
Y. Mori & N. Watanabe. (1978). A New Etching Solution System,
$H_3PO_4-H_2O_2-H_20$ , for GaAs and Its Kinetics. Journal of The Electrochemical Society, 125(9), 1510-1514. DOI : 10.1149/1.2131705 - B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek & O'Dae Kwon. (2001). Evanescent and propagating wave characteristics of the photonic quantum ring laser. Applied Physics Letters, 79(11), 1593-1595. DOI : 10.1063/1.1402655
- J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim & O'Dae Kwon. (1999). Photonic Quantum Ring. Physical Review Letters, 82(3), 536-539. DOI : 10.1103/PhysRevLett.82.536
- J. W. Bae, J. W. Lee, O'Dae Kwon & V. G. Minogin. (2003). Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment. Optics Letters, 28(20), 1861-1863. DOI : 10.1364/OL.28.001861