DOI QR코드

DOI QR Code

습식 식각 공정을 이용하여 제작된 광양자테 소자의 특성 분석

Characterization of photonic quantum ring devices manufactured using wet etching process

  • 김경보 (인하공업전문대학 금속재료과) ;
  • 이종필 (중원대학교 전기전자공학전공) ;
  • 김무진 (강남대학교 IoT 전자공학과)
  • Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College) ;
  • Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University) ;
  • Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
  • 투고 : 2020.04.28
  • 심사 : 2020.06.20
  • 발행 : 2020.06.28

초록

본 논문에서는 VCSEL (Vertical Cavity Surface Emitting Laser) 레이저를 만드는 구조와 유사한 GaAs 웨이퍼상에 MOCVD (Metal Organic Chemical Vapor Deposition) 장비로 GaAs와 AlGaAs 에피층을 형성시킨 구조를 사용한다. 3차원 공진현상에 의해 자연 발생되는 광양자테 (PQR: Photonic Quantum Ring) 소자를 건식 식각 방법인 CAIBE (Chemically Assisted Ion Beam Etching) 기술로 제작하였지만, 진공 분위기에서 진행해야 하는 문제점 때문에 저가격으로 쉽게 소자를 제작할 수 있는 방법이 연구되었고, 그 결과 인산, 과산화수소, 메탄올이 혼합된 용액의 습식식각 기술로 가능성을 확인하였으며, 이 방법을 적용하여 소자를 제작한 내용에 대해 논한다. 또한, 제작된 광소자의 스펙트럼을 측정하였고, 이 결과들을 이론적으로 해석하여 얻은 파장값과 비교한다. 광양자테 소자는 3차원 형상으로 세포를 모델링하거나, 디스플레이 분야로의 응용이 가능할 것으로 기대한다.

A structure in which GaAs and AlGaAs epilayers are formed with a metal organic chemical vapor deposition equipment on a GaAs wafer similar to the structure of making a vertical cavity surface emitting laser is used. Photonic Quantum Ring (PQR) devices that are naturally generated by 3D resonance are manufactured by chemically assisted ion beam etching technology, which is a dry etching method. A new technology that can be fabricated has been studied, and as a result, the possibility of wet etching of a solution containing phosphoric acid, hydrogen peroxide and methanol was investigated, and the device fabrication by applying this method are also discussed. In addition, the spectrum of the fabricated optical device was measured, and the results were theoretically analyzed and compared with the wavelength value obtained by the measurement. It is expected that the PQR device will be able to model cells in a three-dimensional shape or be applied to the display field.

키워드

참고문헌

  1. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. Davani, G. Bohm, S. Jatta, F. Kuppers, P. Meissner & M. Amann. (2011). Surface micromachined tunable 1.55 ${\mu}m$-VCSEL with 102 nm continuous single-mode tuning. Optics Express, 19(18), 17336-17343. DOI : 10.1364/OE.19.017336
  2. V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin & A. Cable. (2012). High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. Electronics Letters, 48(14), 867-869. DOI : 10.1049/el.2012.1552
  3. K. Iga. (2000). Surface-emitting laser-its birth and generation of new optoelectronics field. IEEE Journal of Selected Topics in Quantum Electronics, 6(6), 1201-1215. DOI : 10.1109/2944.902168
  4. G. Hasnain, K. Tai, L. Yang, Y. H. Wang, R. J. Fischer, J. D. Wynn, B. Weir, N. K. Dutta & A. Y. Cho. (1991). Performance of Gain-Guided Surface Emitting Lasers with Semiconductor Distributed Bragg Reflector. IEEE Journal of Quantum Electronics, 27(6), 1377-1385. DOI : 10.1109/3.89954
  5. J. H. Ser, Y. G. Ju, J. H. Shin & Y. H. Lee. (1995). Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings. Applied Physics Letters, 66(21), 2769-2771. DOI : 10.1063/1.113469
  6. T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto & K. Kasahara. (1995). Complete polarization control of 8 ${\times}$ 8 vertical-cavity surface-emitting laser matrix arrays. Applied Physics Letters, 66(8), 908-910. DOI : 10.1063/1.113593
  7. B. Gayral, J. M. Gerard, A. Lemaitre, C. Dupuis, L. Manin & J. L. Pelouard. (1999). High-Q wet etched GaAs microdisks containing InAs quantum boxes. Applied Physics Letters, 75(13), 1908-1910. DOI : 10.1063/1.124894
  8. M. Fujita, R. Ushigome & T. Baba. (2001). Large Spontaneous Emission Factor of 0.1 in a Microdisk Injection Laser. IEEE Photonics Technology Letters, 13(5), 403-405. DOI : 10.1109/68.920731
  9. R. Hristu, S. G. Stanciu, S. J. Wu, F.-J. Kao, O'D. Kwon & G. A. Stanciu. (2011). Optical beam induced current microscopy of photonic quantum ring lasers. Applied Physics B, 103, 653-657. DOI : 10.1007/s00340-011-4441-3
  10. D. K. Kim, Y. C. Kim, M. H. Sheen & O'D. Kwon. (2009). Spatiotemporal dynamics in Rayleigh band of photonic quantum ring laser. Optical and Quantum Electronics, 41, 913-919. DOI : 10.1007/s11082-010-9405-z
  11. O'D. Kwon, D. K. Kim, J. H. Yoon, Y. C. Kim, Y. H. Jang & M. H. Shin. (2009). Photonic quantum ring laser of 3D whispering cave mode. Microelectronics Journal, 40(3), 570-573. DOI : 10.1016/j.mejo.2008.06.092
  12. O. D. Kwon. (2018). A new spectroscopy based upon 3D photonic quantum ring lasers for non-invasive and portable brain/heart disease diagnostic techniques. Phys. Lett, 81, 580-582. DOI : 10.21767/2349-3917-C1-002
  13. Y. Mori & N. Watanabe. (1978). A New Etching Solution System, $H_3PO_4-H_2O_2-H_20$, for GaAs and Its Kinetics. Journal of The Electrochemical Society, 125(9), 1510-1514. DOI : 10.1149/1.2131705
  14. B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek & O'Dae Kwon. (2001). Evanescent and propagating wave characteristics of the photonic quantum ring laser. Applied Physics Letters, 79(11), 1593-1595. DOI : 10.1063/1.1402655
  15. J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim & O'Dae Kwon. (1999). Photonic Quantum Ring. Physical Review Letters, 82(3), 536-539. DOI : 10.1103/PhysRevLett.82.536
  16. J. W. Bae, J. W. Lee, O'Dae Kwon & V. G. Minogin. (2003). Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment. Optics Letters, 28(20), 1861-1863. DOI : 10.1364/OL.28.001861