DOI QR코드

DOI QR Code

Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems

  • Gul, Pinar (Department of Restorative Dentistry, Faculty of Dentistry, Ataturk University) ;
  • Altinok-Uygun, Latife (Graduate Department of Restorative Dentistry, Faculty of Dentistry, Ataturk University)
  • Received : 2019.11.13
  • Accepted : 2020.04.29
  • Published : 2020.06.30

Abstract

PURPOSE. The purpose of this study is to evaluate the repair bond strength of a nanohybrid resin composite to three CAD/CAM blocks using different intraoral ceramic repair systems. MATERIALS AND METHODS. Three CAD/CAM blocks (Lava Ultimate, Cerasmart, and Vitablocks Mark II) were selected for the study. Thirty-two specimens were fabricated from each block. Specimens were randomly divided into eight groups for the following different intraoral repair systems: Group 1: control group (no treatment); Group 2: 34.5% phosphoric acid etching; Group 3: CoJet System; Group 4: Z-Prime Plus System; Group 5: GC Repair System; Group 6: Cimara System; Group 7: Porcelain Repair System; and Group 8: Clearfil Repair System. Then, nanohybrid resin composite (Tetric Evo Ceram) was packed onto treated blocks surfaces. The specimens were thermocycled before application of repair systems and after application of composite resin. After second thermal cycling, blocks were cut into bars (1 × 1 × 12 ㎣) for microtensile bond strength tests. Data were analyzed using two-way ANOVA and Tukey's HSD test (α=.05). RESULTS. Cimara System, Porcelain Repair, and Clearfil Repair systems significantly increased the bond strength of nanohybrid resin composite to all CAD/CAM blocks when compared with the other tested repair systems (P<.05). In terms of CAD/CAM blocks, the lowest values were observed in Vitablocks Mark II groups (P<.05). CONCLUSION. All repair systems used in the study exhibited clinically acceptable bond strength and can be recommended for clinical use.

Keywords

References

  1. Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, Danzer R, Lohbauer U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater 2017;33:99-109. https://doi.org/10.1016/j.dental.2016.10.008
  2. Kurtulmus-Yilmaz S, Cengiz E, Ongun S, Karakaya I. The effect of surface treatments on the mechanical and optical behaviors of CAD/CAM restorative materials. J Prosthodont 2019;28:e496-503. https://doi.org/10.1111/jopr.12749
  3. Blackburn C, Rask H, Awada A. Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J Prosthet Dent 2018;119:954-8. https://doi.org/10.1016/j.prosdent.2017.08.016
  4. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013;29:419-26. https://doi.org/10.1016/j.dental.2013.01.002
  5. Zhang Y, Sailer I, Lawn BR. Fatigue of dental ceramics. J Dent 2013;41:1135-47. https://doi.org/10.1016/j.jdent.2013.10.007
  6. Gungor MB, Nemli SK, Bal BT, Unver S, Dogan A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J Adv Prosthodont 2016;8:259-66. https://doi.org/10.4047/jap.2016.8.4.259
  7. Rekow ED, Silva NR, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res 2011;90:937-52. https://doi.org/10.1177/0022034510391795
  8. Reston EG, Filho SC, Arossi G, Cogo RB, Rocha Cdos S, Closs LQ. Repairing ceramic restorations: final solution or alternative procedure? Oper Dent 2008;33:461-6. https://doi.org/10.2341/07-151
  9. Ustun O, Buyukhatipoglu IK, Secilmis A. Shear bond strength of repair systems to new CAD/CAM restorative materials. J Prosthodont 2018;27:748-54. https://doi.org/10.1111/jopr.12564
  10. Filho AM, Vieira LC, Araujo E, Monteiro Junior S. Effect of different ceramic surface treatments on resin microtensile bond strength. J Prosthodont 2004;13:28-35. https://doi.org/10.1111/j.1532-849X.2004.04007.x
  11. Kussano CM, Bonfante G, Batista JG, Pinto JH. Evaluation of shear bond strength of composite to porcelain according to surface treatment. Braz Dent J 2003;14:132-5. https://doi.org/10.1590/S0103-64402003000200011
  12. Tylka DF, Stewart GP. Comparison of acidulated phosphate fluoride gel and hydrofluoric acid etchants for porcelain-composite repair. J Prosthet Dent 1994;72:121-7. https://doi.org/10.1016/0022-3913(94)90067-1
  13. Kupiec KA, Wuertz KM, Barkmeier WW, Wilwerding TM. Evaluation of porcelain surface treatments and agents for composite-to-porcelain repair. J Prosthet Dent 1996;76:119-24. https://doi.org/10.1016/S0022-3913(96)90294-2
  14. Blum IR, Nikolinakos N, Lynch CD, Wilson NH, Millar BJ, Jagger DC. An in vitro comparison of four intra-oral ceramic repair systems. J Dent 2012;40:906-12. https://doi.org/10.1016/j.jdent.2012.07.008
  15. Elsaka SE. Repair bond strength of resin composite to a novel CAD/CAM hybrid ceramic using different repair systems. Dent Mater J 2015;34:161-7. https://doi.org/10.4012/dmj.2014-159
  16. Ozcan M. The use of chairside silica coating for different dental applications: a clinical report. J Prosthet Dent 2002;87:469-72. https://doi.org/10.1067/mpr.2002.124365
  17. Duzyol M, Sagsoz O, Polat Sagsoz N, Akgul N, Yildiz M. The effect of surface treatments on the bond strength between CAD/CAM blocks and composite resin. J Prosthodont 2016;25:466-71. https://doi.org/10.1111/jopr.12322
  18. Braga RR, Meira JB, Boaro LC, Xavier TA. Adhesion to tooth structure: a critical review of "macro" test methods. Dent Mater 2010;26:e38-49.
  19. Papia E, Larsson C, du Toit M, Vult von Steyern P. Bonding between oxide ceramics and adhesive cement systems: a systematic review. J Biomed Mater Res B Appl Biomater 2014;102:395-413. https://doi.org/10.1002/jbm.b.33013
  20. Park JH, Choi YS. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics. J Adv Prosthodont 2016;8:275-84. https://doi.org/10.4047/jap.2016.8.4.275
  21. Pashley DH, Carvalho RM, Sano H, Nakajima M, Yoshiyama M, Shono Y, Fernandes CA, Tay F. The microtensile bond test: a review. J Adhes Dent 1999;1:299-309.
  22. Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, Monaco A. Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater 2014;29:295-308. https://doi.org/10.1016/j.jmbbm.2013.09.013
  23. Palmer DS, Barco MT, Billy EJ. Temperature extremes produced orally by hot and cold liquids. J Prosthet Dent 1992;67:325-7. https://doi.org/10.1016/0022-3913(92)90239-7
  24. Spierings TA, Peters MC, Bosman F, Plasschaert AJ. Verification of theoretical modeling of heat transmission in teeth by in vivo experiments. J Dent Res 1987;66:1336-9. https://doi.org/10.1177/00220345870660080901
  25. Gale MS, Darvell BW. Thermal cycling procedures for laboratory testing of dental restorations. J Dent 1999;27:89-99. https://doi.org/10.1016/S0300-5712(98)00037-2
  26. Celik Koycu B, Imirzalioglu P. Heat transfer and thermal stress analysis of a mandibular molar tooth restored by different indirect restorations using a three-dimensional finite element method. J Prosthodont 2017;26:460-73. https://doi.org/10.1111/jopr.12397
  27. Zaghloul H, Elkassas DW, Haridy MF. Effect of incorporation of silane in the bonding agent on the repair potential of machinable esthetic blocks. Eur J Dent 2014;8:44-52. https://doi.org/10.4103/1305-7456.126240
  28. Subasi MG, Alp G. Repair bond strengths of non-aged and aged resin nanoceramics. J Adv Prosthodont 2017;9:364-70. https://doi.org/10.4047/jap.2017.9.5.364
  29. Erdemir U, Sancakli HS, Sancakli E, Eren MM, Ozel S, Yucel T, Yildiz E. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material. J Adv Prosthodont 2014;6:434-43. https://doi.org/10.4047/jap.2014.6.6.434
  30. Baur V, Ilie N. Repair of dental resin-based composites. Clin Oral Investig 2013;17:601-8. https://doi.org/10.1007/s00784-012-0722-4
  31. Ozel Bektas O, Eren D, Herguner Siso S, Akin GE. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin. Lasers Med Sci 2012;27:723-8. https://doi.org/10.1007/s10103-011-0958-2
  32. Wiegand A, Stucki L, Hoffmann R, Attin T, Stawarczyk B. Repairability of CAD/CAM high-density PMMA- and composite-based polymers. Clin Oral Investig 2015;19:2007-13. https://doi.org/10.1007/s00784-015-1411-x
  33. Ozcan M, Valandro LF, Amaral R, Leite F, Bottino MA. Bond strength durability of a resin composite on a reinforced ceramic using various repair systems. Dent Mater 2009;25:1477-83. https://doi.org/10.1016/j.dental.2009.06.020
  34. Dos Santos VH, Griza S, de Moraes RR, Faria-E-Silva AL. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments. Restor Dent Endod 2014;39:12-6. https://doi.org/10.5395/rde.2014.39.1.12
  35. Kirmali O, Barutcugil C, Harorli O, Kapdan A, Er K. Resin cement to indirect composite resin bonding: effect of various surface treatments. Scanning 2015;37:89-94. https://doi.org/10.1002/sca.21183
  36. Ozcan M, Barbosa SH, Melo RM, Galhano GA, Bottino MA. Effect of surface conditioning methods on the microtensile bond strength of resin composite to composite after aging conditions. Dent Mater 2007;23:1276-82. https://doi.org/10.1016/j.dental.2006.11.007
  37. Subasi G, Inan O. Shear bond strength of three porcelain repair systems on porcelain in dry and aged conditions. Dentistry 2012;2:1-7.
  38. de Melo RM, Valandro LF, Bottino MA. Microtensile bond strength of a repair composite to leucite-reinforced feldspathic ceramic. Braz Dent J 2007;18:314-9. https://doi.org/10.1590/S0103-64402007000400008
  39. Frankenberger R, Kramer N, Sindel J. Repair strength of etched vs silica-coated metal-ceramic and all-ceramic restorations. Oper Dent 2000;25:209-15.
  40. Ruttermann S, Fries L, Raab WH, Janda R. The effect of different bonding techniques on ceramic/resin shear bond strength. J Adhes Dent 2008;10:197-203.
  41. Rathke A, Tymina Y, Haller B. Effect of different surface treatments on the composite-composite repair bond strength. Clin Oral Investig 2009;13:317-23. https://doi.org/10.1007/s00784-008-0228-2
  42. Hisamatsu N, Atsuta M, Matsumura H. Effect of silane primers and unfilled resin bonding agents on repair bond strength of a prosthodontic microfilled composite. J Oral Rehabil 2002;29:644-8. https://doi.org/10.1046/j.1365-2842.2002.00899.x
  43. Swift EJ Jr, Cloe BC, Boyer DB. Effect of a silane coupling agent on composite repair strengths. Am J Dent 1994;7:200-2.
  44. Tinastepe N, Turkes E, Kazazoglu E. Comparative approach to analyse the effects of different surface treatments on CAD/CAM resin nanoceramics-resin composite repair bond strength. Biotechnol Biotec Eq 2018;32:142-9. https://doi.org/10.1080/13102818.2017.1392260
  45. Ozcan M, Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater 2004;19:725-31. https://doi.org/10.1016/S0109-5641(03)00019-8
  46. Carrabba M, Vichi A, Louca C, Ferrari M. Comparison of traditional and simplified methods for repairing CAD/CAM feldspathic ceramics. J Adv Prosthodont 2017;9:257-64. https://doi.org/10.4047/jap.2017.9.4.257
  47. Shahverdi S, Canay S, Sahin E, Bilge A. Effects of different surface treatment methods on the bond strength of composite resin to porcelain. J Oral Rehabil 1998;25:699-705. https://doi.org/10.1046/j.1365-2842.1998.00299.x
  48. Kim SM, Yoon JY, Lee MH, Oh NS. The effect of resin cements and primer on retentive force of zirconia copings bonded to zirconia abutments with insufficient retention. J Adv Prosthodont 2013;5:198-203. https://doi.org/10.4047/jap.2013.5.2.198
  49. Kirmali O, Kapdan A, Harorli OT, Barutcugil C, Ozarslan MM. Efficacy of ceramic repair material on the bond strength of composite resin to zirconia ceramic. Acta Odontol Scand 2015;73:28-32. https://doi.org/10.3109/00016357.2014.946963

Cited by

  1. Repair Bond Strength of Composite Resin to Aged Resin and Glass-Matrix CAD/CAM Ceramic Materials Using Two Different Repair Systems vol.11, pp.11, 2021, https://doi.org/10.3390/coatings11111331