References
- R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays 20, 119-129 (1999). https://doi.org/10.1016/S0141-9382(99)00013-X
- H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express 15, 15457-15463 (2007). https://doi.org/10.1364/OE.15.015457
- S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012). https://doi.org/10.1021/nl302110z
- B. Zeng, Y. Gao, and F. J. Bartoli, "Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters," Sci. Rep. 3, 2840 (2013). https://doi.org/10.1038/srep02840
- W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength Optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
- K. A. Willets and R. P. V. Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104607
- T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). https://doi.org/10.1038/35570
- F. V. Beijnum, C. Retif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. V. Exter, "Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission," Nature 492, 411-414 (2012). https://doi.org/10.1038/nature11669
- H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008). https://doi.org/10.1038/nature06762
- H. Liu and P. Lalanne, "Comprehensive microscopic model of the extraordinary optical transmission," J. Opt. Soc. Am. A 27, 2542-2550 (2010).
- T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nat. Commun. 1, 59 (2010). https://doi.org/10.1038/ncomms1058
-
C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, "Omnidirectional color filters capitalizing on a nano-resonator of Ag-
$TiO_2$ -Ag integrated with a phase compensating dielectric overlay," Sci. Rep. 5, 8467 (2015). https://doi.org/10.1038/srep08467 - Y. S. Do, "A highly reproducible fabrication process for large-area plasmonic filters for optical applications," IEEE Access 6, 68961-68967 (2018). https://doi.org/10.1109/ACCESS.2018.2880456
- Y. G. Moon, Y. S. Do, M. H. Lee, B. Y. Hwang, D. J. Jeong, B.-K. Ju, and K. C. Choi, "Plasmonic chromatic electrode with low resistivity," Sci. Rep. 7, 15206 (2017). https://doi.org/10.1038/s41598-017-15465-8
- Y. S. Do and K. C. Choi, "Poly-periodic hole arrays for angle-invariant plasmonic filters," Opt. Lett. 40, 3873-3876 (2015). https://doi.org/10.1364/OL.40.003873
- S. Chang, Y. S. Do, J.-W. Kim, B. Y. Hwang, J. Choi, B.-H. Choi, Y.-H. Lee, K. C. Choi, and B.-K. Ju, "Photo-insensitive amorphous oxide thin-film transistor integrated with a plasmonic filter for transparent electronics," Adv. Funct. Mater. 24, 3482-3487 (2014). https://doi.org/10.1002/adfm.201304114
- Y. S. Do and K. C. Choi, "Quantitative analysis of enhancing extraordinary optical transmission affected by dielectric environment," J. Opt. 16, 065005 (2014). https://doi.org/10.1088/2040-8978/16/6/065005
- Y. H. Lee and Y. S. Do, "Optimal design method for a plasmonic color filter by using individual phenomenon in a plasmonic hybrid structure," Korean J. Opt. Photon. 29, 275-284 (2018). https://doi.org/10.3807/KJOP.2018.29.6.275
- Y. S. Do, J . H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, "Plasmonic color filter and its fabrication for large-area applications," Adv. Opt. Mater. 1, 133-138 (2013). https://doi.org/10.1002/adom.201200021
- A. K. Azad and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Opt. Lett. 30, 2945-2947 (2005). https://doi.org/10.1364/OL.30.002945
- H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998). https://doi.org/10.1103/PhysRevB.58.6779
- F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, "Efficiency and finite size effects in enhanced transmission through subwavelength apertures," Opt. Express 16, 9571-9579 (2008). https://doi.org/10.1364/OE.16.009571
- S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). https://doi.org/10.1364/OPEX.13.003150
- B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010). https://doi.org/10.1038/nmat2810