DOI QR코드

DOI QR Code

Polyperiodic-hole-array Plasmonic Color Filter for Minimizing the Effect of Angle of Incidence

입사광각의 영향을 최소화한 다결정 주기 구멍 배열 플라즈모닉 컬러 필터의 설계

  • Jeong, Ki Won (School of Electronics Engineering, Kyungpook National University) ;
  • Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
  • 정기원 (경북대학교 IT대학 전자공학부) ;
  • 도윤선 (경북대학교 IT대학 전자공학부)
  • Received : 2020.02.11
  • Accepted : 2020.03.24
  • Published : 2020.06.25

Abstract

In this paper we propose a plasmonic color filter with a novel nanopattern. The suggested pattern, called a "polyperiodic hole array" (PPHA), is introduced to solve the angle dependence of the optical response that originates from the periodic structure. We set the diameter and period of the hole to make a green color filter, and set the unit-cell size and metal and dielectric thicknesses in consideration of the propagation length and skin depth. The periodic hole arrays are locally rotated to make a PPHA pattern, resulting in a globally aperiodic yet partially periodic pattern. As a result, compared to a general pattern, the PPHA nanostructured color filter has a maximum 40% improvement in spectral shift when the angle of incidence is increased from 0° to 30°. Transmittance reduction was also alleviated by 30%. This work will improve the performance of nanostructured color filters and help with nanotechnology being applied industrially to imaging devices, including displays and image sensors.

본 논문에서는 주기적인 구멍배열(periodic hole array, PHA) 패턴을 가진 나노금속구조 컬러필터의 문제점인 입사광의 각도에 따른 컬러필터 중심파장의 이동을 해결하기 위해 새로운 구멍 패턴인 polyperiodic hole array (PPHA)를 제시한다. 먼저 녹색파장대역 컬러필터를 만들기 위해 구멍의 직경과 주기를 정했으며 propagation length와 skin depth를 고려해 단위셀의 크기, 금속과 유전체의 두께를 설정했다. PPHA 패턴을 만들기 위해 주기적인 구멍배열을 국부적으로 회전시켜 전체적으로는 비주기적이지만 부분적으로 주기적인 패턴을 만들었다. 그 결과 PHA 패턴과 대비하여 PPHA 패턴 나노금속구조 컬러필터는 입사광각이 0°에서 30°까지 증가하였을 때 파장의 이동도가 최대 40% 개선되었다. 본 연구를 통해 나노금속구조 컬러필터의 성능을 향상시킬 수 있으며 디스플레이, 이미지 센서 등 이미징 디바이스 분야에 접목시켜 산업적으로 활용할 수 있을 것으로 예상한다.

Keywords

References

  1. R. W. Sabnis, "Color filter technology for liquid crystal displays," Displays 20, 119-129 (1999). https://doi.org/10.1016/S0141-9382(99)00013-X
  2. H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express 15, 15457-15463 (2007). https://doi.org/10.1364/OE.15.015457
  3. S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012). https://doi.org/10.1021/nl302110z
  4. B. Zeng, Y. Gao, and F. J. Bartoli, "Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters," Sci. Rep. 3, 2840 (2013). https://doi.org/10.1038/srep02840
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength Optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  6. K. A. Willets and R. P. V. Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem. 58, 267-297 (2007). https://doi.org/10.1146/annurev.physchem.58.032806.104607
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). https://doi.org/10.1038/35570
  8. F. V. Beijnum, C. Retif, C. B. Smiet, H. Liu, P. Lalanne, and M. P. V. Exter, "Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission," Nature 492, 411-414 (2012). https://doi.org/10.1038/nature11669
  9. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008). https://doi.org/10.1038/nature06762
  10. H. Liu and P. Lalanne, "Comprehensive microscopic model of the extraordinary optical transmission," J. Opt. Soc. Am. A 27, 2542-2550 (2010).
  11. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nat. Commun. 1, 59 (2010). https://doi.org/10.1038/ncomms1058
  12. C. S. Park, V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, "Omnidirectional color filters capitalizing on a nano-resonator of Ag-$TiO_2$-Ag integrated with a phase compensating dielectric overlay," Sci. Rep. 5, 8467 (2015). https://doi.org/10.1038/srep08467
  13. Y. S. Do, "A highly reproducible fabrication process for large-area plasmonic filters for optical applications," IEEE Access 6, 68961-68967 (2018). https://doi.org/10.1109/ACCESS.2018.2880456
  14. Y. G. Moon, Y. S. Do, M. H. Lee, B. Y. Hwang, D. J. Jeong, B.-K. Ju, and K. C. Choi, "Plasmonic chromatic electrode with low resistivity," Sci. Rep. 7, 15206 (2017). https://doi.org/10.1038/s41598-017-15465-8
  15. Y. S. Do and K. C. Choi, "Poly-periodic hole arrays for angle-invariant plasmonic filters," Opt. Lett. 40, 3873-3876 (2015). https://doi.org/10.1364/OL.40.003873
  16. S. Chang, Y. S. Do, J.-W. Kim, B. Y. Hwang, J. Choi, B.-H. Choi, Y.-H. Lee, K. C. Choi, and B.-K. Ju, "Photo-insensitive amorphous oxide thin-film transistor integrated with a plasmonic filter for transparent electronics," Adv. Funct. Mater. 24, 3482-3487 (2014). https://doi.org/10.1002/adfm.201304114
  17. Y. S. Do and K. C. Choi, "Quantitative analysis of enhancing extraordinary optical transmission affected by dielectric environment," J. Opt. 16, 065005 (2014). https://doi.org/10.1088/2040-8978/16/6/065005
  18. Y. H. Lee and Y. S. Do, "Optimal design method for a plasmonic color filter by using individual phenomenon in a plasmonic hybrid structure," Korean J. Opt. Photon. 29, 275-284 (2018). https://doi.org/10.3807/KJOP.2018.29.6.275
  19. Y. S. Do, J . H. Park, B. Y. Hwang, S.-M. Lee, B.-K. Ju, and K. C. Choi, "Plasmonic color filter and its fabrication for large-area applications," Adv. Opt. Mater. 1, 133-138 (2013). https://doi.org/10.1002/adom.201200021
  20. A. K. Azad and W. Zhang, "Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness," Opt. Lett. 30, 2945-2947 (2005). https://doi.org/10.1364/OL.30.002945
  21. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998). https://doi.org/10.1103/PhysRevB.58.6779
  22. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Leon-Perez, J. Bravo-Abad, F. J. Garcia-Vidal, and L. Martin-Moreno, "Efficiency and finite size effects in enhanced transmission through subwavelength apertures," Opt. Express 16, 9571-9579 (2008). https://doi.org/10.1364/OE.16.009571
  23. S.-H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). https://doi.org/10.1364/OPEX.13.003150
  24. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nat. Mater. 9, 707-715 (2010). https://doi.org/10.1038/nmat2810