Acknowledgement
This research is funded by the Office of Research and Development of National Chung-Hsing University (NCHU) and Ministry of Science and Technology, Taiwan, R.O.C. under Grant no. MOST 107-2218-E-005-020-MY2. I also like to thank the National Center for Research on Earthquake Engineering (NCREE) for providing the catalog of earthquake motions.
References
- Architectural Institute of Japan (AIJ), (2001), Recommendations for Design of Building Foundations (in Japanese).
- Ardeshiri-Lajimi, S., Yazdani, M. and Assadi-Langroudi, A. (2016), "A Study on the liquefaction risk in seismic design of foundations", Geomech. Eng., 11(6), 805-820. http://doi.org/10.12989/gae.2016.11.6.805.
- Bao, X., Xia, Z., Ye, G., Fu, Y. and Su, D. (2017), "Numerical analysis on the seismic behavior of a large metro subway tunnel in liquefiable ground", Tunn. Undergr. Sp. Technol., 66, 91-106. http://doi.org/10.1016/j.tust.2017.04.005.
- Beaty, M. and Byrne, P. M. (1998), "An effective stress model for predicting liquefaction behaviour of sand", Geotech. Earthq. Eng. Soil Dyn., 75(1), 766-777.
- Boulanger, R.W. and Ziotopoulou, K. (2013), "Formulation of a sand plasticity plane-strain model for earthquake engineering applications", Soil Dyn. Earthq. Eng., 53, 254-267. http://doi.org/10.1016/j.soildyn.2013.07.006.
- Byrne P.M. (1991), "A cyclic shear-volume coupling and porepressure model for sand", Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, U.S.A.
- Castiglia, M., de Magistris, F.S. and Napolitano, A. (2018), "Stability of onshore pipelines in liquefied soils: Overview of computational methods", Geomech. Eng., 14(4), 355-366. http://doi.org/10.1016/B978-0-12-397949-0.00004-2.
- Chian, S.C. and Madabhushi, S.P.G. (2012a), "Effect of buried depth and diameter on uplift of underground structures in liquefied soils", Soil Dyn. Earthq. Eng., 41, 181-190. http://doi.org/10.1016/j.soildyn.2012.05.020.
- Chian, S.C. and Madabhushi, S.P.G. (2012b), "Effect of soil conditions on uplift of underground structures in liquefied soil", J. Earthq. Tsunami. 6(4), 1250020. http://doi.org/10.1142/S1793431112500200.
- Chou, J.C. (2010), "Centrifuge modeling of the BART transbay tube and numerical simulation of tunnels in liquefying ground", Ph.D. Dissertation, University of California, Davis, California, U.S.A.
- Chou, J.C., Kutter, B.L., Travasarou, T. and Chacko, J.M. (2011), "Centrifuge modeling of seismically induced uplift for the BART transbay tube", J. Geotech. Geoenviron. Eng., 137(8), 754-765. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000489.
- Han, Y. and Liu, H. (2016), "Failure of circular tunnel in saturated soil subjected to internal blast loading", Geomech. Eng., 11(3), 421-438. http://doi.org/10.12989/gae.2016.11.3.421.
- Itasca Consulting Group Inc, (2011), FLAC Version 7.0, Software, https://www.itascacg.com/software/flac.
- Japan Road Association (JRA), (1996), Design Specifications for Highway Bridges, Part V Seismic Design, Japan (in Japanese).
- Kang, G.C., Tobita, T. and Iai, S. (2014), "Seismic simulation of liquefaction-induced uplift behavior of a hollow cylinder structure buried in shallow ground", Soil Dyn. Earthq. Eng., 64, 85-94. http://doi.org/10.1016/j.soildyn.2014.05.006.
- Kang, G.C., Tobita, T., Iai, S. and Ge, L. (2013), "Centrifuge modeling and mitigation of manhole uplift due to liquefaction", J. Geotech. Geoenviron. Eng., 139(3), 458-469. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000769.
- Koseki, J., Matsuo, O. and Koga, Y. (1997), "Uplift behavior of underground structures caused by liquefaction of surrounding soil during earthquake", Soils Found., 37(1), 97-108. http://doi.org/10.3208/sandf.37.97.
- Liu, H. and Song, E. (2005), "Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations", Comput. Geotech., 32(4), 223-244. http://doi.org/10.1016/j.compgeo.2005.02.002.
- Madabhushi, S.S.C. and Madabhushi, S.P.G. (2015), "Finite element analysis of floatation of rectangular tunnels following earthquake induced liquefaction", Indian Geotech. J., 45(3), 233-242. http://doi.org/10.1007/s40098-014-0133-3.
- Martin, G.R., Finn, W.D.L. and Seed, H.B. (1975), "Fundamentals of liquefaction under cyclic loading", J. Geotech. Div., 101(GT5), 423-438. https://doi.org/10.1061/AJGEB6.0000164
- Puebla, H., Byrne, P.M. and Phillips, R. (1997), "Analysis of CANLEX liquefaction embankments: Prototype and centrifuge models", Can. Geotech. J., 34(5), 641-657. http://doi.org/10.1139/t97-034.
- Sasaki, T. and Tamura, K. (2004), "Prediction of liquefactioninduced uplift displacement of underground structures", Proceedings of the 36th Joint Meeting US-Japan Panel on Wind and Seismic Effects.
- Seed, H.B., Tokimatsu, K., Harder, L.F. and Chung, R.M. (1985), "The influence of SPT procedures in soil liquefaction resistance evaluation", J. Geotech. Eng. Div., 111(12), 1425-1445. http://doi.org/10.1061/(ASCE) 0733-9410(1985)111:12(1425).
- Sinotech Engineering Consultants (Sinotech) (2012), Taiwan's Next Generation Attenuation Relationship for Ground Motion Project Report, Taipei, Taiwan (in Chinese).
- Tamura, K. (2014), "Seismic design of highway bridge foundations with the effects of liquefaction since the 1995 Kobe earthquake", Soils Found., 54(4), 874-882. https://doi.org/10.1016/j.sandf.2014.06.017.
- Tobita, T., Kang, G.C. and Iai, S. (2011), "Centrifuge modeling on manhole uplift in a liquefied trench", Soils Found., 51(6), 1091-1102. http://doi.org/10.3208/sandf.51.1091.
- Tokimatsu, K. and Yoshimi, Y. (1983), "Empirical correlation of soil liquefaction based on SPT N-value and fines content", Soils Found., 23(4), 56-74. http://doi.org/10.3208/sandf1972.23.4_56.
- Watanabe, K., Sawada, R. and Koseki, J. (2016), "Uplift mechanism of open-cut tunnel in liquefied ground and simplified method to evaluate the stability against uplifting", Soils Found., 56(3), 412-426. http://doi.org/10.1016/j.sandf.2016.04.008.
- Yang, D., Naesgaard, E., Byrne, P.M., Adalier, K. and Abdoun, T. (2004), "Numerical model verification and calibration of George Massey Tunnel using centrifuge models", Can. Geotech. J., 41(5), 921-942. http://doi.org/10.1139/t04-039.
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C.C., Marcuson, III., W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B. and Stokoe, II, K.H. (2001), "Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on evaluation of liquefaction resistance of soils", J. Geotech. Geoenviron. Eng., 127(10), 817-833. http://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817).
- Ziotopoulou, K. and Boulanger, R.W. (2013), "Calibration and implementation of a sand plasticity plane-strain model for earthquake engineering applications", Soil Dyn. Earthq. Eng., 53, 268-280. http://doi.org/10.1016/j.soildyn.2013.07.009.
- Ziotopoulou, K. and Boulanger, R.W. (2016), "Plasticity modeling of liquefaction effects under sloping ground and irregular cyclic loading conditions", Soil Dyn. Earthq. Eng., 84, 269-283, http://doi.org/10.1016/j.soildyn.2016.02.013.