References
- Matsumoto D, Takagi M, Fushimi Y, et al. Effects of gamma-aminobutyric acid administration on health and growth rate of group-housed Japanese black calves fed using an automatic controlled milk feeder. J Vet Med Sci 2009;71:651-6. https://doi.org/10.1292/jvms.71.651
-
Cho YR, Chang JY, Chang HC. Production of
${\gamma}$ -aminobutyric acid (GABA) by Lactobacillus buchneri isolated from Kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 2007;17:104-9. - Diana M, Quilez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods 2014;10:407-20. https://doi.org/10.1016/j.jff.2014.07.004
- Vo T, Park JH. Characteristics of potential gamma-aminobutyric acid-producing bacteria isolated from Korean and Vietnamese fermented fish products. J Microbiol Biotechnol 2019;29:209-21. https://doi.org/10.4014/jmb.1811.09072
- Li H, Cao Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010;39:1107-16. https://doi.org/10.1007/s00726-010-0582-7
- Mazur R, Kovalovska K, Hudec J. Changes in selectivity of gamma-aminobutyric acid formation effected by fermentation conditions and microorganisms resources. J Microbiol Biotechnol Food Sci 2011;1:164-71.
-
Ku BS, Mamuad LL, Kim SH, et al. Effect of
${\gamma}$ -aminobutyric acid (GABA) producing bacteria on in vitro rumen fermentation, biogenic amine production and anti-oxidation using corn meal as substrate. Asian-Australas J Anim Sci 2013;26:804-11. https://doi.org/10.5713/ajas.2012.12558 - Murillo M, Herrera E, Reyes O, Gurrola JN, Gutierrez E. Use in vitro gas production technique for assessment of nutritional quality of diets by range steers. Afr J Agric Res 2011;6:2522-6. https://doi.org/10.5897/AJAR10.753
- Hassanat F, Benchaar C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J Sci Food Agric 2013;93:332-9. https://doi.org/10.1002/jsfa.5763
- Russell JB, Van Soest PJ. In vitro ruminal fermentation of organic acids common in forage. Appl Environ Microbiol 1984;47:155-9. https://doi.org/10.1128/aem.47.1.155-159.1984
- Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130
- Han SK, Kim SH, Shin HS. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochem 2005;40:2897-905. https://doi.org/10.1016/j.procbio.2005.01.005
- Tabaru H, Kadota E, Yamada H, Sasaki N, Takeuchi A. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Nihon Juigaku Zasshi [Internet]. 1988;50:1124-6. https://doi.org/10.1292/jvms1939.50.1124
- Jo C, Cho SH, Chang J, Nam KC. Keys to production and processing of Hanwoo beef: a perspective of tradition and science. Anim Front 2012;2:32-8. https://doi.org/10.2527/af. 2012-0060
- SAS Institute. SAS version 9.4. Carey, NC, USA: SAS Inst. Inc.; 2012.
- Lounglawan P, Suksombat W. Effect of soybean oil and lactic acid bacteria supplementation on performance and CLA accumulation in milk of dairy cows. J Anim Vet Adv 2011;10:868-74. https://doi.org/10.3923/javaa.2011.868.874
- Seo JK, Kim SW, Kim MH, Upadhaya SD, Kam DK, Ha JK. Direct-fed microbials for ruminant animals. Asian-Australas J Anim Sci 2010;23:1657-67. https://doi.org/10.5713/ajas. 2010.r.08
- Dryhurst N, Wood CD. The effect of nitrogen source and concentration on in vitro gas production using rumen micro-organisms. Anim Feed Sci Technol 1998;71:131-43. https://doi.org/10.1016/S0377-8401(97)00124-7
- Raeth-Knight ML, Linn JG, Jung HG. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of Holstein dairy cows. J Dairy Sci 2007;90:1802-9. https://doi.org/10.3168/jds.2006-643
- Buchanan-Smith JG. An investigation into palatability as a factor responsible for reduced intake of silage by sheep. Anim Prod 1990;50:253-60. https://doi.org/10.1017/S000335610 0004700
- Dawson L, Mayne CS. The effects of either dietary additions or intraruminal infusion of amines and juice extracted from grass silage on the voluntary intake of steers offered grass silage. Anim Feed Sci Technol 1995;56:119-31. https://doi.org/10.1016/0377-8401(95)00809-2
- Komuro Y, Ishihara K, Kojima Y, Saigenji K, Hotta K. Distinct effects of tetragastrin in rat gastroduodenal mucosa on mucin content and mucosal protective action against histamine-induced injury. Dig Dis Sci 1998;43:1050-6. https://doi.org/10.1023/A:1018839003603
- Aschenbach JR, Gabel G. Effect and absorption of histamine in sheep rumen: significance of acidotic epithelial damage. J Anim Sci 2000;78:464-70. https://doi.org/10.2527/2000.782 464x
- LeBlanc JG, del Carmen S, Miyoshi A, et al. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice. J Biotechnol 2011;151:287-93. https://doi.org/10.1016/j.jbiotec.2010.11.008
-
Zhang M, Zou XT, Li H, Dong XY, Zhao W. Effect of dietary
${\gamma}$ -aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Anim Sci J 2012;83:141-7. https://doi.org/10.1111/j.1740-0929.2011.00939.x - Cruywagen CW, Jordaan I, Venter L. Effect of Lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J Dairy Sci 2010;79:483-6. https://doi.org/10.3168/jds.S0022-0302(96)76389-0
- Ando S, Ishida M, Oshio S, Tanaka O. Effects of isolated and commercial lactic acid bacteria on the silage quality, digestibility, voluntary intake and ruminal fluid characteristics. Asian-Australas J Anim Sci 2006;19:386-9. https://doi.org/10.5713/ajas.2006.386
- Pilachai R, Schonewille JT, Thamrongyoswittayakul C, et al. Starch source in high concentrate rations does not affect rumen pH, histamine and lipopolysaccharide concentrations in dairy cows. Livest Sci 2012;150:135-42. https://doi.org/10.1016/j.livsci.2012.08.009
- Thorlacius H, Nobaek S, Wang XD, et al. Lactobacilli attenuate bacteremia and endotoxemia associated with severe intra-abdominal infection. Surgery 2003;134:467-73. https://doi.org/10.1067/S0039-6060(03)00246-0
- Wang Y, Li Y, Xie J, et al. Protective effects of probiotic Lactobacillus casei Zhang against endotoxin- and d-galactosamine-induced liver injury in rats via anti-oxidative and anti-inflammatory capacities. Int Immunopharmacol 2013;15:30-7. https://doi.org/10.1016/j.intimp.2012.10.026