DOI QR코드

DOI QR Code

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A. (Department of Medical Equipment Technology, Faculty of Allied Medical Sciences, Pharos University in Alexandria) ;
  • Hamzawy, A. (Physics Department, Al-Jamoum University College, Umm Al-Qura University) ;
  • Badawi, Mohamed S. (Physics Department, Faculty of Science, Beirut Arab University)
  • 투고 : 2019.09.01
  • 심사 : 2019.11.20
  • 발행 : 2020.06.25

초록

The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

키워드

참고문헌

  1. M. Belluscio, R. de Leo, A. Pantaleo, A. Vox, Effects of finite dimensions in source-detector solid-angle evaluation, Nucl. Instrum. Methods 114 (1974) 145-147. https://doi.org/10.1016/0029-554X(74)90349-8
  2. R. Carchon, E. Van Camp, G. Knuyt, R. Van De Vyver, J. Devos, H. Ferdinande, A general solid angle calculation by a Monte Carlo method, Nucl. Instrum. Methods 128 (1975) 195-199. https://doi.org/10.1016/0029-554X(75)90796-X
  3. L. Wielopolski, The Monte Carlo calculation of the average solid angle subtended by a right circular cylinder from distributed sources, Nucl. Instrum. Methods 143 (1977) 577-581. https://doi.org/10.1016/0029-554X(77)90249-X
  4. L. Wielopolski, Monte Carlo calculation of the average solid angle subtended by a parallelepiped detector from a distributed source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 226 (1984) 436-448. https://doi.org/10.1016/0168-9002(84)90062-7
  5. B.T. Stavroulaki, S.N. Kaplanis, Monte-Carlo solutions of the solid angle integrals for radiation detectors, Comput. Phys. Commun. 18 (1979) 7-12. https://doi.org/10.1016/0010-4655(79)90020-1
  6. S.N. Kaplanis, Geometric, effective solid angles and intrinsic efficiencies of a $3{\times}3$ in. NaI(Tl) for isotropic and non-isotropic photon emission, Int. J. Appl. Radiat. Isot. 33 (1982) 127-135. https://doi.org/10.1016/0020-708X(82)90219-8
  7. J. Cook, Solid angle subtended by two rectangles, Nucl. Instrum. Methods 178 (1980) 561-564. https://doi.org/10.1016/0029-554X(80)90838-1
  8. H.R. Vega Carrillo, Geometrical efficiency for a parallel disk source and detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 371 (1996) 535-537. https://doi.org/10.1016/0168-9002(95)00998-1
  9. J. Zhang, X. Chen, C. Zhang, G. Li, J. Xu, G. Sun, Development of a software package for solid-angle calculations using the Monte Carlo method, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 736 (2014) 40-45. https://doi.org/10.1016/j.nima.2013.10.048
  10. M.Y. Kang, G.M. Sun, J. Kim, H.D. Choi, Determination of HPGe peak efficiency for voluminous gamma-ray sources by using an effective solid angle method, Appl. Radiat. Isot. 116 (2016) 69-76. https://doi.org/10.1016/j.apradiso.2016.07.015
  11. L. Ruby, J.B. Rechen, A simpler approach to the geometrical efficiency of a parallel-disk source and detector system, Nucl. Instrum. Methods 58 (1968) 345-346. https://doi.org/10.1016/0029-554X(68)90491-6
  12. L. Ruby, Further comments on the geometrical efficiency of a parallel-disk source and detector system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 337 (1994) 531-533. https://doi.org/10.1016/0168-9002(94)91124-X
  13. H. Gotoh, H. Yagi, Solid angle subtended by a rectangular slit, Nucl. Instrum. Methods 96 (1971) 485-486. https://doi.org/10.1016/0029-554X(71)90624-0
  14. R.P. Gardner, K. Verghese, On the solid angle subtended by a circular disc, Nucl. Instrum. Methods 93 (1971) 163-167. https://doi.org/10.1016/0029-554X(71)90155-8
  15. K. Verghese, R.P. Gardner, R.M. Felder, Solid angle subtended by a circular cylinder, Nucl. Instrum. Methods 101 (1972) 391-393. https://doi.org/10.1016/0029-554X(72)90214-5
  16. Y.S. Selim, M.I. Abbas, Source-detector geometrical efficiency, Radiat. Phys. Chem. 44 (1994) 1-4. https://doi.org/10.1016/0969-806X(94)90093-0
  17. Y.S. Selim, M.I. Abbas, Direct calculation of the total efficiency of cylindrical scintillation detectors for extended circular sources, Radiat. Phys. Chem. 48 (1996) 23-27. https://doi.org/10.1016/0969-806X(95)00047-2
  18. Y.S. Selim, M.I. Abbas, M.A. Fawzy, Analytical calculation of the efficiencies of gamma scintillators. Part I: total efficiency for coaxial disk sources, Radiat. Phys. Chem. 53 (1998) 589-592. https://doi.org/10.1016/S0969-806X(97)00277-6
  19. Y.S. Selim, M.I. Abbas, Analytical calculations of gamma scintillators efficiencies - II. Total efficiency for wide coaxial circular disk sources, Radiat. Phys. Chem. 58 (2000) 15-19. https://doi.org/10.1016/S0969-806X(99)00357-6
  20. J.T. Conway, Generalizations of Ruby's formula for the geometric efficiency of a parallel-disk source and detector system, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 562 (2006) 146-153. https://doi.org/10.1016/j.nima.2006.02.197
  21. J.T. Conway, Geometric efficiency for a circular detector and a ring source of arbitrary orientation and position, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 640 (2011) 99-109. https://doi.org/10.1016/j.nima.2011.03.014
  22. S. Pomme, L. Johansson, G. Sibbens, B. Denecke, An algorithm for the solid angle calculation applied in alpha-particle counting, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 505 (2003) 286-289. https://doi.org/10.1016/S0168-9002(03)01070-2
  23. S. Pomme, A complete series expansion of Ruby's solid-angle formula, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 531 (2004) 616-620. https://doi.org/10.1016/j.nima.2004.05.088
  24. S. Pomme, J. Paepen, A series expansion of Conway's generalised solid-angle formulas, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 579 (2007) 272-274. https://doi.org/10.1016/j.nima.2007.04.054
  25. M.J. Prata, Analytical calculation of the solid angle defined by a cylindrical detector and a point cosine source with orthogonal axes, Radiat. Phys. Chem. 66 (2003) 387-395. https://doi.org/10.1016/S0969-806X(03)00006-9
  26. M.J. Prata, Solid angle subtended by a cylindrical detector at a point source in terms of elliptic integrals, Radiat. Phys. Chem. 67 (2003) 599-603. https://doi.org/10.1016/S0969-806X(03)00144-0
  27. M.J. Prata, Analytical calculation of the solid angle defined by a cylindrical detector and a point cosine source with parallel axes, Radiat. Phys. Chem. 69 (2004) 273-279. https://doi.org/10.1016/S0969-806X(03)00474-2
  28. M. Prata, Analytical calculation of the solid angle subtended by a circular disc detector at a point cosine source, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 521 (2004) 576-585. https://doi.org/10.1016/j.nima.2003.10.098
  29. S. Tryka, Calculation of the solid angle subtended by a cylinder at a point, Appl. Radiat. Isot. 70 (2012) 2466-2470. https://doi.org/10.1016/j.apradiso.2012.07.002
  30. D.M. Timus, M.J. Prata, S.L. Kalla, M.I. Abbas, F. Oner, E. Galiano, Some further analytical results on the solid angle subtended at a point by a circular disk using elliptic integrals, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 580 (2007) 149-152. https://doi.org/10.1016/j.nima.2007.05.055
  31. M.I. Abbas, S. Hammoud, T. Ibrahim, M. Sakr, Analytical formulae to calculate the solid angle subtended at an arbitrarily positioned point source by an elliptical radiation detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 771 (2015) 121-125. https://doi.org/10.1016/j.nima.2014.10.061
  32. A. Hamzawy, Validation of analytical formula for the efficiency calibration of gamma detectors using coaxial and off-axis extended sources, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 618 (2010) 216-222. https://doi.org/10.1016/j.nima.2010.02.275
  33. A. Hamzawy, Simple analytical formula to calculate $\gamma$-ray cylindrical detectors efficiencies, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 624 (2010) 125-129. https://doi.org/10.1016/j.nima.2010.09.013
  34. M.S. Badawi, Accurate calculation of well-type detector geometrical efficiency using sources with different shapes and geometries, J. Instrum. 10 (2015) P10017. https://doi.org/10.1088/1748-0221/10/10/P10017
  35. J.T. Conway, Analytical solution for the solid angle subtended at any point by an ellipse via a point source radiation vector potential, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 614 (2010) 17-27. https://doi.org/10.1016/j.nima.2009.11.075
  36. R.L. Burden, J.D. Faires, Numerical Analysis, ninth ed., Brooks Cole, 2011.

피인용 문헌

  1. Non-destructive radiological characterization applied to fusion waste management vol.173, 2020, https://doi.org/10.1016/j.fusengdes.2021.112805