DOI QR코드

DOI QR Code

Ionic Liquid Crystal Electrolytes based on Ether Functionalized Ionic Liquid for Lithium Batteries

리튬전지용 에테르가 기능화된 이온성 액체 기반 이온성 액정 전해질의 전기화학적 특성

  • Kim, Il Jin (New Functional Components Research Team, Korea Institute of Footwear and Leather Technology (KIFLT)) ;
  • Kim, Ki Su (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Jin Hong (Department of Organic Material Science and Engineering, Pusan National University)
  • 김일진 (한국신발피혁연구원 혁신소재연구단) ;
  • 김기수 (부산대학교 공과대학 유기소재시스템공학과) ;
  • 이진홍 (부산대학교 공과대학 유기소재시스템공학과)
  • Received : 2020.04.27
  • Accepted : 2020.05.14
  • Published : 2020.06.10

Abstract

In this study, a series of ionic liquids based electrolytes for lithium batteries were prepared by mixing the anion functionalized ionic liquid, [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite), with the lithium salt, LiTf2N (lithium bis(trifluoromethanesulfonyl)imide), and the concentration of lithium salt was varied between 0 and 3.0 molar ratio. We observed the ionic mixtures became opaque and spontaneously aggregated to form a thermotropic ionic liquid crystal. Extensive spectroscopic examinations of the ionic liquid crystals were carried out to investigate their self-organized structures and the ion transport behavior depending on the concentration of lithium salt. An increase in the ionic conductivity was observed for the ionic liquid crystals related to the ability to form ion diffusion pathways along the ordered structures, resulting in improved electrochemical performances of lithium batteries.

본 연구에서는 에테르가 기능화된 이온성 액체인 [DMIm][MPEGP] (1,3-dimethylimidazolium (2-methoxy(2-ethoxy(2-ethoxy)))-ethylphosphite)와 리튬염인 LiTf2N (lithium bis(trifluoromethanesulfonyl)imide)을 혼합하였고, 리튬염의 함량을 조절하여 전해질을 특성을 조사하였다. 제조된 전해질은 리튬염 혼합에 따라 불투명해지고 흐름성이 제한된 열방성 액정을 형성하였으며, 이때 리튬염의 함량에 따라 형성되는 이온성 액정의 자기조립구조와 이온 전도 현상을 다양한 분광학적 분석을 통해 조사하였다. 그 결과 이온성 액정의 향상된 이온전도도는 정렬된 구조를 통한 이온 전도 특성과 관계가 있음을 확인하였으며, 리튬이온전지 특성 평가에서 우수한 전기화학적 특성을 나타냄을 확인하였다.

Keywords

References

  1. Y. Sun, N. Liu, and Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
  2. Q. Zhang, K. Liu, F. Ding, and X. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10, 4139-4174 (2017). https://doi.org/10.1007/s12274-017-1763-4
  3. J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, 195, 4554-4569 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
  4. E. Quartarone and P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives, Chem. Soc. Rev., 40, 2525-2540 (2011). https://doi.org/10.1039/c0cs00081g
  5. F. Zheng, M. Kotobuki, S. Song, M. O. Lai, and L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 389, 198-213 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.022
  6. K. Goossens, K. Lava, C. W. Bielawski, and K. Binnemans, Ionic liquid crystals: Versatile materials, Chem. Rev., 116, 4643-4807 (2016). https://doi.org/10.1021/cr400334b
  7. K. Binnemans, Ionic liquid crystals, Chem. Rev., 105, 4148-4204 (2005). https://doi.org/10.1021/cr0400919
  8. T. Ichikawa, T. Kato, and H. Ohno, Dimension control of ionic liquids, Chem. Commun., 55, 8205-8214 (2019). https://doi.org/10.1039/C9CC04280F
  9. T. Kato, M. Yoshio, T. Ichikawa, B. Soberats, H. Ohno, and M. Funahashi, Transport of ions and electrons in nanostructured liquid crystals, Nat. Rev. Mater., 2, 17001 (2017). https://doi.org/10.1038/natrevmats.2017.1
  10. P.-L. Champagne, D. Ester, A. Bhattacharya, K. Hofstetter, C. Zellman, S. Bag, H. Yu, S. Trudel, V. K. Michaelis, V. E. Williams, V. Thangadurai, and C.-C. Ling, Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin, J. Mater. Chem. A, 7, 12201-12213 (2019). https://doi.org/10.1039/C9TA01852B
  11. T. Onuma, E. Hosono, M. Takenouchi, J. Sakuda, S. Kajiyama, M. Yoshio, and T. Kato, Noncovalent approach to liquid-crystalline ion conductors: High-rate performances and room-temperature operation for Li-ion batteries, ACS Omega, 3, 159-166 (2018). https://doi.org/10.1021/acsomega.7b01503
  12. S. Wang, X. Liu, A. Wang, Z. Wang, J. Chen, Q. Zeng, X. Wang, and L. Zhang, An ionic liquid crystal-based solid polymer electrolyte with desirable ion-conducting channels for superior performance ambient-temperature lithium batteries, Polym. Chem., 9, 4674-4682 (2018). https://doi.org/10.1039/c8py00951a
  13. A. Eisele, K. Kyriakos, K. R. Bhandary, M. Schonhoff, C. M. Papadakis, and C. M. B. Rieger, Structure and ionic conductivity of liquid crystals having propylene carbonate units, J. Mater. Chem. A, 3, 2942-2953 (2015). https://doi.org/10.1039/C4TA05401F
  14. J. H. Lee, K. S. Han, J. S. Lee, A. S. Lee, S. K. Park, S. Y. Hong, J.-C. Lee, K. T. Mueller, S. M. Hong, and C. M. Koo, Facilitated ion transport in smectic ordered ionic liquid crystals, Adv. Mater., 28, 9301-9307 (2016). https://doi.org/10.1002/adma.201602702
  15. G. A. Giffin, Ionic liquid-based electrolytes for "beyond lithium" battery technologies, J. Mater. Chem. A, 4, 13378-13389 (2016). https://doi.org/10.1039/C6TA05260F
  16. S. K. Park, K. S. Han, J. H. Lee, V. Murugesan, S. H. Lee, C. M. Koo, J. S. Lee, and K. T. Mueller, Evolution of ion-ion interactions and structures in smectic ionic liquid crystals, J. Phys. Chem. C, 123, 20547-20557 (2019). https://doi.org/10.1021/acs.jpcc.9b04056
  17. M. J. Monteiro, F. F. C. Bazito, L. J. A. Siqueira, M. C. C. Ribeiro, and R. M. Torresi, Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid, J. Phys. Chem. B, 112, 2102-2109 (2008). https://doi.org/10.1021/jp077026y
  18. A. S. Lee, J. H. Lee, S. M. Hong, J.-C. Lee, S. S. Hwang, and C. M. Koo, Ion conduction behaviour in chemically crosslinked hybrid ionogels: Effect of free-dangling oligoethyleneoxides. RSC Adv., 5, 94241-94247 (2015). https://doi.org/10.1039/C5RA18856C
  19. Q. Zhang, Y. Zhang, Y. Meng, Y. Wang, J. Ou, Y. Guo, and D. Xiao, Phytic acid derived LiFePO4 beyond theoretical capacity as high-energy density cathode for lithium ion battery, Nano Energy, 34, 408-420 (2020). https://doi.org/10.1016/j.nanoen.2017.03.006

Cited by

  1. 1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사 vol.31, pp.6, 2020, https://doi.org/10.14478/ace.2020.1076