DOI QR코드

DOI QR Code

Synthesis and Characterization of Energetic Thermoplastic Elastomers based on Carboxylated GAP Copolymers

  • 투고 : 2020.03.26
  • 심사 : 2020.04.14
  • 발행 : 2020.06.10

초록

Energetic thermoplastic elastomers (ETPEs) based on glycidyl azide polymer (GAP) and carboxylated GA copolymers [GAP-ETPE and poly(GA-carboxylate)-ETPEs] were synthesized using isophorone diisocyanate (IPDI), dibutyltin dilaurate (DBTDL), 1,4-butanediol (1,4-BD), and soft segment oligomers such as GAP and poly(GA-carboxylate). The synthesized GAP-ETPE and poly(GA-carboxylate)-ETPEs were characterized by Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), universal testing machine (UTM), calorimetry and sensitivity towards friction and impact. DSC and TGA results showed that the introduction of carboxylate group in GAP helped to have better thermal properties. Glass transition temperatures of poly(GA-carboxylate)-ETPEs decreased from -31 ℃ to -33 ℃ compared to that of GAP-ETPE (-29 ℃). The first thermal decomposition temperature in poly(GA0.8-octanoate0.2)-ETPE (242 ℃) increased in comparison to that of GAP-ETPE (227 ℃). Furthermore, from calorimetry data, poly(GA-carboxylate)-ETPEs exhibited negative formation enthalpies (-6.94 and -7.21 kJ/g) and higher heats of combustion (46713 and 46587 kJ/mol) compared to that of GAP-ETPE (42,262 kJ/mol). Overall, poly(GA-carboxylate)-ETPEs could be good candidates for a polymeric binder in solid propellant due to better energetic, mechanical and thermal properties in comparison to those of GAP-ETPE. Such properties are beneficial to application and processing of ETPE.

키워드

참고문헌

  1. S. Filippi, L. Mori, M. Cappello, and G. Polacco, Glycidyl azide-butadiene block copolymers: Synthesis from the homopolymers and a chain extender, Propell. Explos. Pyrot., 42, 826-835 (2017). https://doi.org/10.1002/prep.201600263
  2. Y. Wu, Y. Luo, and Z. Ge, Properties and application of a novel type of glycidyl azide polymer (GAP)-modified nitrocellulose powders, Propell. Explos. Pyrot., 40, 67-73 (2015). https://doi.org/10.1002/prep.201400005
  3. E. Diaz, P. Brousseau, and R. Emery, Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN, Propell. Explos. Pyrot., 28, 101-106 (2003). https://doi.org/10.1002/prep.200390015
  4. F. M. Betzler, V. A, Hartdegen, T. M. Klapotke, and S. M. Sproll, A new energetic binder: Glycidyl nitramine polymer, Cent. Eur. J. Energ. Mater., 13, 289-300 (2016). https://doi.org/10.22211/cejem/64984
  5. A. K. Sikder and S. Reddy, Review on energetic thermoplastic elastomers (ETPEs) for military science, Propell. Explos. Pyrot., 38, 14-28 (2013). https://doi.org/10.1002/prep.201200002
  6. Z. Zhang, N. Luo, J. Deng, Z. Ge, and Y. Luo, A kind of bonding functional energetic thermoplastic elastomers based on glycidyl azide polymer, J. Elastom. Plast., 48, 728-738 (2016). https://doi.org/10.1177/0095244315618699
  7. J. S. You, J. O. Kweon, S. C. Kang, and S. T. Noh, A kinetic study of thermal decomposition of glycidyl azide polymer (GAP)-based energetic thermoplastic polyurethanes, Macromol. Res., 18, 1226-1232 (2010). https://doi.org/10.1007/s13233-010-1215-4
  8. A. M. Kawamoto, J. I. S. Oliveira, R. C. L. Dutra, L. C. Rezende, T. Keicher, and H. Krause, Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations, J. Aerosp. Technol. Manag., 1, 35-42 (2009). https://doi.org/10.5028/jatm.2009.01013542
  9. P. K. Behera, K. M. Usha, P. K. Guchhait, D. Jehnichen, A. Das, B. Voit, and N. K. Singha, A novel ionomeric polyurethane elastomer based on ionic liquid as crosslinker, RSC Adv., 6, 99404-99413 (2019).
  10. C. Zhang, Y. J. Luo, Q. J. Jiao, B. Zhai, and X. Y. Guo, Application of the BAMO-AMMO alternative block energetic thermoplastic elastomer in composite propellant, Propell. Explos. Pyrot., 39, 689-693 (2014). https://doi.org/10.1002/prep.201300164
  11. A. Eceiza, M. D. Martin, K. Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: Mechanical and thermal properties, Polym. Eng. Sci., 48, 297-306 (2008). https://doi.org/10.1002/pen.20905
  12. J. S. You and S. T. Noh, Rheological and thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane elastomers, Polym. Int., 62, 158-164 (2013). https://doi.org/10.1002/pi.4271
  13. D. K. Chattopadhyay, B. Sreedhar, V. S, Kothapalli, and N. Raju, Effect of chain extender on phase mixing and coating properties of polyurethane ureas, Ind. Eng. Chem. Res., 44, 1772-1779 (2005). https://doi.org/10.1021/ie0492348
  14. J. Djonlagic and M. S. Nikolic, Thermoplastic copolyester elastomers, Handbook of Engineering and Specialty Thermoplastics, 3, 377-428 (2011).
  15. J. S. Kim, D. K. Kim, J. O. Kweon, J. M. Lee, S. T. Noh, and S. Y. Kim, Effects of annealing temperature on thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane, Appl. Chem. Eng., 24, 305-313 (2013).
  16. O. C. Elena, A. A. Francisca, M. T. P. Ana, and O. B. Cesar, Characterization of polyurethanes containing different chain extenders, Prog. Rubber Plast. Re., 27, 145-160 (2011).
  17. J. S. You, S. C. Kang, S. K. Kweon, H. L. Kim, Y. H. Ahn, and S. T. Noh, Thermal decomposition kinetics of GAP ETPE/RDX-based solid propellant, Thermochim. Acta, 537, 51-56 (2012). https://doi.org/10.1016/j.tca.2012.02.032
  18. H. Kim, Y. Jang, S. Noh, J. Jeong, D. Kim, B. Kang, T. Kang, H. Choi, and H. Rhee, Ecofriendly synthesis and characterization of carboxylated GAP copolymers, RSC Adv., 8, 20032-20038 (2018). https://doi.org/10.1039/C8RA03643H
  19. S. M. Pedreira, J. R. A. Pinto, E. A. Campos, E. D. C. Mattos, M. S. O. Junior, J. I. S. Oliveira, and R. C. L. Dutra, Methodologies for characterization of aerospace polymers/energetic materials- a short review, J. Aerosp. Technol. Manag., 8, 18-25 (2016). https://doi.org/10.5028/jatm.v8i1.576
  20. Y. Zhang, J. Zhao, P. Yang, S. He, and H. Huang, Synthesis and characterization of energetic GAP-b-PAEMA block copolymer, Polym. Eng. Sci., 52, 768-773 (2012). https://doi.org/10.1002/pen.22140
  21. Y. Li, G. Li, J. Li, and Y. Luo, Preparation and properties of semi-interpenetrating networks combined by thermoplastic polyurethane and a thermosetting elastomer, New J. Chem., 42, 3087-3096 (2018). https://doi.org/10.1039/c7nj03841k
  22. Y. M. Mohan and K. M. Raju, Synthesis and characterization of HTPB-GAP cross-linked co-polymers, Des. Monomers Polym., 8, 159-175 (2005). https://doi.org/10.1163/1568555053603215
  23. B. Li, Y. Zhao, G. Liu, X. Li, and Y. Luo, Mechanical properties and thermal decomposition of PBAMO/GAP random block ETPE, J. Therm. Anal. Calorim., 126, 717-724 (2016). https://doi.org/10.1007/s10973-016-5524-5
  24. E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Polymer nanocomposites from energetic thermoplastic elastomers and $Alex^{(R)}$, Propell. Explos. Pyrot., 28, 210-215 (2003). https://doi.org/10.1002/prep.200300007
  25. S. Pisharath and H. G. Ang, Synthesis and thermal decomposition of GAP-poly(BAMO) copolymer, Polym. Degrad. Stabil., 92, 1365-1377 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.016
  26. S. Hafner, T. Keicher, and T. M. Klapotke, Copolymers based on GAP and 1,2-epoxyhexane as promising prepolymers for energetic binder systems, Propell. Explos. Pyrot., 43, 126-135 (2018). https://doi.org/10.1002/prep.201700198
  27. E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Heat of combustion and formation of new energetic thermoplastic elastomers based on GAP, polyNIMMO and polyGLYN, Propell. Explos. Pyrot., 28, 101-106 (2003). https://doi.org/10.1002/prep.200390015