DOI QR코드

DOI QR Code

CO2로부터 5원환 탄산염의 화학적 고정화 반응을 위한 Metal-Organic Frameworks의 촉매적 응용

Catalytic Application of Metal-Organic Frameworks for Chemical Fixation of CO2 into Cyclic Carbonate

  • 지훈 (한국화학연구원 정밀화학융합기술연구센터) ;
  • 카나가라지 나빈 (한국화학연구원 정밀화학융합기술연구센터) ;
  • 김동우 (한국화학연구원 정밀화학융합기술연구센터) ;
  • 조득희 (한국화학연구원 정밀화학융합기술연구센터)
  • Ji, Hoon (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Naveen, Kanagaraj (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Kim, Dongwoo (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology) ;
  • Cho, Deug-Hee (Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology)
  • 투고 : 2020.04.16
  • 심사 : 2020.05.13
  • 발행 : 2020.06.10

초록

CO2로부터 5원환 탄산염의 합성은 지구 온난화를 문제를 해결하고 정밀한 화학 물질을 생산하는 유망한 방법 중 하나이다. 본 총설에서는 CO2와 에폭시 화합물로부터 5원환 탄산염 합성을 위한 다공성 결정 물질인 metal-organic framework (MOF)의 촉매로써 적용 가능성에 대해 검토하였다. CO2와 에폭시 화합물의 부가 반응에 대하여 MOF의 구조적 기능과 그에 따른 불균일계 촉매로써의 활성을 조사하였다. 그 결과, 5원환 탄산염 합성에서 MOF 촉매의 산점(acidic site)과 친핵체(nucleophile)의 상승효과(synergistic effect)에 의하여 반응성이 높아지는 것을 확인하였다. 또한 CO2의 부가반응에서 설계된 MOF의 구조에 대한 영향과 반응메커니즘을 조사하여 제시하였다.

The chemical fixation of CO2 into cyclic carbonates is considered to be one of the most promising way to alleviate global warming and produce fine chemicals. In this work, the catalytic applicability of metal-organic frameworks (MOFs) as porous crystalline materials for the synthesis of five-membered cyclic carbonate from CO2 and epoxides was reviewed. In addition, we have briefly classified the materials based on their different structural features and compositions. The studies revealed that MOFs exhibited good catalytic performance towards cyclic carbonate synthesis because of the synergistic effect between the acid sites of MOFs and nucleophile. Moreover, the effect of structure of designed MOFs and mechanism for the cycloaddition of CO2 were suggested.

키워드

참고문헌

  1. D. G. Gavin and C. J. Bower, Options for reducing greenhouse gases in the global environment, Proc. of the JAPAN-EC, Japan (1991).
  2. S. Inoue, T. Tsuruta, and H. Koinuma, Copolymerzation of carbon dioxide and epoxide, J. Polym. Sci. Polym. Lett., 7(4), 287-292 (1969). https://doi.org/10.1002/pol.1969.110070408
  3. C. A. Trickett, A. Helal, B. A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, and O. M. Yaghi, The chemistry of metal-organic frameworks for $CO_2$ capture, regeneration and conversion, Nat. Rev. Mats., 2, 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45
  4. S. H. Cho, B. C. Bai, H. R. Yu, and Y. S. Lee, Carbon capture and $CO_2/CH_4$ separation technique using porous carbon materials, Appl. Chem. Eng., 22(5), 343-347 (2011).
  5. S. Chu, Carbon capture and sequestration, Science, 325(5948), 1599 (2009). https://doi.org/10.1126/science.1181637
  6. T. Sakakura, J. C. Choi, and H. Yasuda, Transformation of carbon dioxide, Chem. Rev., 107(6), 2365-2387 (2007). https://doi.org/10.1021/cr068357u
  7. C. Maeda, Y. Miyazaki, and T. Ema, Recent progress in catalytic conversions of carbon dioxide, Catal. Sci. Technol., 6, 1482-1497 (2014).
  8. F. K. Jintu, R. Yadagiri, A. S. Palakkal, R. S. Pilla, Y. Gu, Y. Choe, and D. W. Park, Water-tolerant DUT-series metal-organic frameworks: A theoretical-experimental study for the chemical fixation of $CO_2$ and catalytic transfer hydrogenation of ethyl levulinate to $\gamma$-valerolactone, ACS Appl. Mater. Interfaces, 11, 41458-41471 (2019) https://doi.org/10.1021/acsami.9b16834
  9. C. Federsel, R. Jackstell, and M. Beller, State-of-the-art catalysts for hydrogenation of carbon dioxide, Angew. Chem. Int. Ed., 49, 6254-6257 (2010). https://doi.org/10.1002/anie.201000533
  10. U. Romano, Dimethyl carbonate and its production technology, Chim. Ind., 75, 303-306 (1993).
  11. A. A. G. Shaikh and S. Sivaram, Organic carbonates, Chem. Rev., 96(3), 951-976 (1996). https://doi.org/10.1021/cr950067i
  12. K. Weissermel and H. J. Arpe, Industral Organic Chemestry, 3rd ed., Wiley-VCH, New York (1997).
  13. S. Zhang, J. Sun, X. Zhang, J. Xun, Q. Miao, and J. Wang, Ionic liquid-based green processes for energy production, Chem. Soc. Rev., 43, 7838-7869 (2014). https://doi.org/10.1039/c3cs60409h
  14. M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, and F. E. Kuhn, Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge?, Angew. Chem. Int. Ed., 50, 8510-8537 (2011). https://doi.org/10.1002/anie.201102010
  15. G. Fiorani, W. Guo, and A. W. Kleij, Sustainable conversion of carbon dioxide: The advent of organocatalysis, Green Chem., 17, 1375-1389 (2015). https://doi.org/10.1039/C4GC01959H
  16. D. W. Kim, R. Roshan, J. Tharun, K. A. Cherian, and D. W. Park, Catalytic applications of immobilized ionic liquids for synthesis of cyclic carbonates from carbon dioxide and epoxides, Korean J. Chem. Eng., 30(11), 1973-1984 (2013). https://doi.org/10.1007/s11814-013-0193-6
  17. Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O. K. Farha, D. S. Sholl, and R. Q. Snurr, Computation-Ready, Experimental metal-organic frameworks: A tool to enable high-throughput screening of nanoporous crystals, Chem. Mater., 26(21), 6185-6192 (2014). https://doi.org/10.1021/cm502594j
  18. P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. P. Maloney, P. A. Wood, S. C. Ward, and D. Fairen-Jimenez, Development of a cambridge structural database subset: A collection of metal-rganic frameworks for past, present, and future, Chem. Mater., 29(7), 2618-2625 (2017). https://doi.org/10.1021/acs.chemmater.7b00441
  19. J. Liang, Y. B. Huang, and R. Cao, Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates, Coord. Chem. Rev., 378, 32-65 (2019). https://doi.org/10.1016/j.ccr.2017.11.013
  20. A. Pramanik, S. Abbina, and G. Das, Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives, Polyhedron, 26, 5225-5234 (2007). https://doi.org/10.1016/j.poly.2007.07.033
  21. D. Dang, P. Wu, C. He, Z. Xie, and C. Duan, Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis, J. Am. Chem. Soc., 132, 14321-14323 (2010). https://doi.org/10.1021/ja101208s
  22. P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo, J. S. Chang, J. M. Greneche, I. Margiolaki, and G. Ferey, Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chem. Commun., 27, 2820-2822 (2007). https://doi.org/10.1039/B704325B
  23. A. Henschel, K. Gedrich, R. Kraehnert, and S. Kaskel, Catalytic properties of MIL-101, Chem. Commun., 35, 4192-4194 (2008).
  24. K. Schlichte, T. Kratzke, and S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound $Cu_3(BTC)_2$, Micro. Meso. Mater., 73, 81-88 (2004). https://doi.org/10.1016/j.micromeso.2003.12.027
  25. F. Vermoortele, M. Vandichel, B. V. Voorde, R. Ameloot, M. Waroquier, V. V. Speybroeck, and D. E. Vos, Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks, Angew. Chem. Int. Ed., 51, 4887-4890 (2012). https://doi.org/10.1002/anie.201108565
  26. A. Dhakshinamoorthy, Z. Li, and H. Garcia, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 47, 8134-8172 (2018). https://doi.org/10.1039/c8cs00256h
  27. Y. Kishimoto and I. Ogawa, Amine-catalyzed, one-pot coproduction of dialkyl carbonates and 1,2-diols from epoxides, alcohols, and carbon dioxide, Ind. Eng. Chem. Res., 43, 8155-8162 (2004). https://doi.org/10.1021/ie040006n
  28. J. W. Huang and M. Shi, Chemical fixation of carbon dioxide by $NaI/PPh_3/PhOH$, J. Org. Chem., 68, 6705-6709 (2003). https://doi.org/10.1021/jo0348221
  29. J. Song, Z. Zhang, S. Hu, T. Wu, T. Jiang, and B. Han, MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and $CO_2$ under mild conditions, Green Chem., 11, 1031-1036 (2009). https://doi.org/10.1039/b902550b
  30. D. A. Yang, H. Y. Cho, J. Kim, S. T. Yang, and W. S. Ahn, $CO_2$ capture and conversion using Mg-MOF-74 prepared by a sonochemical method, Energy Environ. Sci., 5, 6465-6473 (2012). https://doi.org/10.1039/C1EE02234B
  31. B. Chen, Z. Yang, Y. Zhua, and Y. Xia, Zeolitic imidazolate frame work materials: Recent progress in synthesis and applications, J. Mater. Chem. A, 2, 16811-16831 (2014). https://doi.org/10.1039/C4TA02984D
  32. R. Roshith, J. Tharun, B. Robin, G. Y. Hwang, C. K. A. Cherian, D. W. Kim, and D. W. Park, A room temperature synthesizable and environmental friendly heterogeneous ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of cyclic carbonates, Appl. Catal. B:Environ., 182, 562-569 (2016). https://doi.org/10.1016/j.apcatb.2015.10.005
  33. C. M. Miralda, E. E. Macias, M. Zhu, P. Ratnasamy, and M. A. Carreon, Zeolitic imidazole framework-8 catalysts in the conversion of $CO_2$ to chloropropene carbonate, ACS Catal., 2, 180-183 (2012). https://doi.org/10.1021/cs200638h
  34. L. Yang, L. Yu, G. Diao, M. Sun, G. Cheng, and S. Chen, Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for chemical fixation of carbon dioxide, J. Mol. Catal. A, 392, 278-283 (2014). https://doi.org/10.1016/j.molcata.2014.05.033
  35. T. Jose, Y. Hwang, D. W. Kim, M. I. Kim, and D. W. Park, Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl etherm, Catal. Today, 245, 61-67 (2015). https://doi.org/10.1016/j.cattod.2014.05.022
  36. N. Sharma, S. S. Dhankhar, and C. M. Nagaraja, Environment-friendly, co-catalyst- and solvent free fixation of $CO_2$ using an ionic zinc(II)-porphyrin complex immobilized in porous metal-organic frameworks, Sustain. Energ. Fuels, 3, 2977-2982 (2019). https://doi.org/10.1039/C9SE00282K
  37. M. Ding and H. Jiang, Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for $CO_2$ capture and conversion, ACS Catal., 8, 3194-3201 (2018). https://doi.org/10.1021/acscatal.7b03404
  38. Z. Wang and S. M. Cohen, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev., 38, 1315-1329 (2009). https://doi.org/10.1039/b802258p
  39. J. Liang, R. P. Chen, X. Y. Wang, T. T. Liu, X. S. Wang, Y. B. Huang, and R. Cao, Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides, Chem. Sci., 8, 1570-1575 (2017). https://doi.org/10.1039/c6sc04357g