DOI QR코드

DOI QR Code

선택적 레이저 용융 공정의 공정변수 평가를 위한 용융풀 유한요소 모델

A Finite Element Model of Melt Pool for the Evaluation of Selective Laser Melting Process Parameters

  • 이강현 (서울대학교 기계항공공학부) ;
  • 윤군진 (서울대학교 기계항공공학부)
  • Lee, Kanghyun (Department of Aerospace Engineering, Seoul National University) ;
  • Yun, Gun Jin (Department of Aerospace Engineering, Seoul National University)
  • 투고 : 2020.01.22
  • 심사 : 2020.04.17
  • 발행 : 2020.06.05

초록

Selective laser melting(SLM) is one of the powder bed fusion(PBF) processes, which enables quicker production of nearly fully dense metal parts with a complex geometry at a moderate cost. However, the process still lacks knowledge and the experimental evaluation of possible process parameter sets is costly. Thus, this study presents a finite element analysis model of the SLM process to predict the melt pool characteristics. The physical phenomena including the phase transformation and the degree of consolidation are considered in the model with the effective method to model the volume shrinkage and the evaporated material removal. The proposed model is used to predict the melt pool dimensions and validated with the experimental results from single track scanning process of Ti-6Al-4V. The analysis result agrees with the measured data with a reasonable accuracy and the result is then used to evaluated each of the process parameter set.

키워드

참고문헌

  1. ASTM Committee F42 on Additive Manufacturing Technologies, & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology, "Standard Terminology for Additive Manufacturing Technologies," ASTM International, 2012.
  2. M. Wong, S. Tsopanos, C. J. Sutcliffe and I. Owen, "Selective Laser Melting of Heat Transfer Devices" Rapid Prototyping Journal, Vol. 13, No. 5, pp. 291-297, 2007. https://doi.org/10.1108/13552540710824797
  3. P. Rochus, J. Y. Plesseria, M. Van Elsen, J. P. Kruth, R. Carrus and T. Dormal, "New Applications of Rapid Prototyping and Rapid Manufacturing (RP/RM) Technologies for Space Instrumentation," Acta Astronautica, Vol. 61, No. 1-6, pp. 352-359, 2007. https://doi.org/10.1016/j.actaastro.2007.01.004
  4. B. Vandenbroucke and J. P. Kruth, "Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts," Rapid Prototyping Journal, Vol. 13, No. 4, pp. 196-203, 2007. https://doi.org/10.1108/13552540710776142
  5. A. T. Clare, P. R. Chalker, S. Davies, C. J. Sutcliffe and S. Tsopanos, "Selective Laser Melting of High Aspect Ratio 3D Nickel-Titanium Structures Two Way Trained for MEMS Applications," International Journal of Mechanics and Materials in Design, Vol. 4, No. 2, pp. 181-187, 2008. https://doi.org/10.1007/s10999-007-9032-4
  6. Majumdar, T., Bazin, T., Ribeiro, E. M. C., Frith, J. E., & Birbilis, N., "Understanding the Effects of PBF Process Parameter Interplay on Ti-6Al-4V Surface Properties," PloS One, 14(8), 2019.
  7. C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh and S. L. Sing, "Review of Selective Laser Melting: Materials and Applications," Applied Physics Reviews, Vol. 2, No. 4, 041101, 2015. https://doi.org/10.1063/1.4935926
  8. S. L. Sing, J. An, W. Y. Yeong and F. E. Wiria, "Laser and Electron‐beam Powder‐bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs," Journal of Orthopaedic Research, Vol. 34, No. 3, pp. 369-385, 2016. https://doi.org/10.1002/jor.23075
  9. J. Zhang, B. Song, Q. Wei, D. Bourell and Y. Shi, "A Review of Selective Laser Melting of Aluminum Alloys: Processing, Microstructure, Property and Developing Trends," Journal of Materials Science & Technology, Vol. 35, No. 2, pp. 270-284, 2019. https://doi.org/10.1016/j.jmst.2018.09.004
  10. M. Rombouts, J. P. Kruth, L. Froyen and P. Mercelis, "Fundamentals of Selective Laser Melting of Alloyed Steel Powders," CIRP annals, Vol. 55, No. 1, pp. 187-192, 2006. https://doi.org/10.1016/S0007-8506(07)60395-3
  11. L. Rickenbacher, T. Etter, S. Hövel and K. Wegener, "High Temperature Material Properties of IN738LC Processed by Selective Laser Melting(SLM) Technology," Rapid Prototyping Journal, Vol. 19. No. 4, pp. 282-290, 2013. https://doi.org/10.1108/13552541311323281
  12. D. Gu, Y. C. Hagedorn, W. Meiners, K. Wissenbach and R. Poprawe, "Selective Laser Melting of In-situ TiC/Ti5Si3 Composites with Novel Reinforcement Architecture and Elevated Performance," Surface and Coatings Technology, Vol. 205, No. 10, pp. 3285-3292, 2011. https://doi.org/10.1016/j.surfcoat.2010.11.051
  13. C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach and R. Poprawe, "Formation and Reduction of Hydrogen Porosity during Selective Laser Melting of AlSi10Mg," Journal of Materials Processing Technology, Vol. 221, pp. 112-120, 2015. https://doi.org/10.1016/j.jmatprotec.2015.02.013
  14. F. S. Schwindling, M. Seubert, S. Rues, U. Koke, M. Schmitter and T. Stober, "Two-body Wear of Cocr Fabricated by Selective Laser Melting Compared with Different Dental Alloys," Tribology Letters, Vol. 60, No. 2, p. 25, 2015. https://doi.org/10.1007/s11249-015-0601-7
  15. C. H. Fu and Y. B. Guo, "Three-dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V," Journal of Manufacturing Science and Engineering, Vol. 136, No. 6, 061004, 2014. https://doi.org/10.1115/1.4028539
  16. A. Hussein, L. Hao, C. Yan and R. Everson, "Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-support in Selective Laser Melting," Materials & Design (1980-2015), Vol. 52, pp. 638-647, 2013. https://doi.org/10.1016/j.matdes.2013.05.070
  17. L. Ladani, J. Romano, W. Brindley and S. Burlatsky, "Effective Liquid Conductivity for Improved Simulation of Thermal Transport in Laser Beam Melting Powder Bed Technology," Additive Manufacturing, Vol. 14, pp. 13-23, 2017. https://doi.org/10.1016/j.addma.2016.12.004
  18. S. Roy, M. Juha, M. S. Shephard and A. M. Maniatty, "Heat Transfer Model and Finite Element Formulation for Simulation of Selective Laser Melting," Computational Mechanics, Vol. 62, No. 3, pp. 273-284, 2018. https://doi.org/10.1007/s00466-017-1496-y
  19. J. Goldak, A. Chakravarti and M. Bibby, "A New Finite Element Model for Welding Heat Sources," Metallurgical Transactions B, Vol. 15, No. 2, pp. 299-305, 1984. https://doi.org/10.1007/BF02667333
  20. S. L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. Braun and G. B. McFadden, "Thermodynamically-consistent Phase-field Models for Solidification," Physica D: Nonlinear Phenomena, Vol. 69, No. 1-2, pp. 189-200, 1993. https://doi.org/10.1016/0167-2789(93)90189-8
  21. D. Gu, Y. C. Hagedorn, W. Meiners, G. Meng, R. J. S. Batista, K. Wissenbach and R. Poprawe, "Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium," Acta Materialia, Vol. 60, No. 9, pp. 3849-3860, 2012. https://doi.org/10.1016/j.actamat.2012.04.006
  22. C. Pauzon, E. Hryha, P. Forêt and L. Nyborg, "Effect of Argon and Nitrogen Atmospheres on the Properties of Stainless Steel 316 L Parts Produced by Laser-powder Bed Fusion," Materials & Design, Vol. 179, 107873, 2019. https://doi.org/10.1016/j.matdes.2019.107873
  23. F. Verhaeghe, T. Craeghs, J. Heulens and L. Pandelaers, "A Pragmatic Model for Selective Laser Melting with Evaporation," Acta Materialia, Vol. 57, No. 20, pp. 6006-6012, 2009. https://doi.org/10.1016/j.actamat.2009.08.027
  24. J. Trapp, A. M. Rubenchik, G. Guss and M. J. Matthews, "In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-Bed Fusion Additive Manufacturing," Applied Materials Today, Vol. 9, pp. 341-349, 2017. https://doi.org/10.1016/j.apmt.2017.08.006
  25. S. Coeck, M. Bisht, J. Plas and F. Verbist, "Prediction of Lack of Fusion Porosity in Selective Laser Melting Based on Melt Pool Monitoring Data," Additive Manufacturing, Vol. 25, pp. 347-356, 2019. https://doi.org/10.1016/j.addma.2018.11.015
  26. S. Shrestha, T. Starr and K. Chou, "A Study of Keyhole Porosity in Selective Laser Melting: Single-Track Scanning with Micro-CT Analysis," Journal of Manufacturing Science and Engineering, Vol. 141, No. 7, 071004, 2019. https://doi.org/10.1115/1.4043622