DOI QR코드

DOI QR Code

Design of a wideband cymbal transducer array

광대역 심벌 트랜스듀서 배열 설계

  • Received : 2020.03.17
  • Accepted : 2020.04.09
  • Published : 2020.05.31

Abstract

Cymbal transducers are often used as an array rather than single because they have a high quality factor and low energy conversion efficiency. When used as an array, there occurs a big change in the frequency characteristics of the array due to the interaction between constituent transducers. In this study, we designed the structure of a cymbal transducer array to have ultra-wideband characteristics using this property. First, cymbal transducers with specific center frequencies were designed. Then, a 2×2 planar array was constructed with the designed transducers, where the cymbal transducers were arranged to have same or opposite polarization directions. For this structure, we analyzed the effect of the difference in the center frequency of and the spacing between the constituent transducers on the acoustical characteristics of the array. Based on the analysis, we designed the structure of the cymbal transducer array to have the widest possible bandwidth.

심벌 트랜스듀서는 높은 품질계수와 낮은 에너지 변환 효율성을 가지기 때문에 단일보다는 배열형으로 많이 사용된다. 단, 배열형으로 사용하면 구성 트랜스듀서들 간의 상호작용으로 인해 주파수 특성에 많은 변화가 나타난다. 본 연구에서는 이러한 성질을 이용하여 초광대역 특성을 가지는 배열형 심벌 트랜스듀서의 구조를 설계하였다. 먼저, 특정 중심 주파수를 가지는 심벌 트랜스듀서를 설계하였다. 그리고 설계된 심벌 트랜스듀서들로 2×2 평면 배열을 구성하는데, 구성 트랜스듀서들이 모두 동일하거나 엇갈리는 분극 방향을 가지도록 하였다. 이 배열구조에 대해서 구성 트랜스듀서들 간의 중심 주파수 차이와 트랜스듀서들 중심과 중심 간의 간격이 전체 배열 구조의 음향특성에 미치는 영향을 분석하였다. 이 결과를 바탕으로 비대역폭이 최대가 되는 배열형 심벌 트랜스듀서의 구조를 도출하였다.

Keywords

References

  1. J. Rice, "Seaweb acoustic communication and navigation networks," Proc. Int. Conf. Underwater Acoustic Measurements: Technologies & Results, 28, 1-7 (2005).
  2. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: Research challenges," Ad Hoc Networks, 3, 257-279 (2005). https://doi.org/10.1016/j.adhoc.2005.01.004
  3. J. H. Cui, J. Kong, M. Gerla, and S. Zhou, "The challenges of building scalable mobile underwater wireless sensor networks for aquatic applications," IEEE Netw. 20, 12-18 (2006). https://doi.org/10.1109/MNET.2006.1580914
  4. A. Feeney, F. Bejarano, and M. Lucas, "Dynamics characterisation of cymbal transducers for power ultrasonics applications," Phys. Procedia, 87, 29-34 (2016). https://doi.org/10.1016/j.phpro.2016.12.006
  5. A. Dogan, Flextensional "Moonie and Cymbal" Actuators, (Ph.D. thesis, University of Pennsylvania, 1994).
  6. F. Bejarano, A. Feeney, and M. Lucas, "A cymbal transducer for power ultrasonics applications," Sens. Actuators, A: Phys, 210, 182-189 (2014). https://doi.org/10.1016/j.sna.2014.02.024
  7. J. Zhang, W. J. Hughes, P. Bouchilloux, R. J. Meyer Jr., K. Uchino, and R. E. Newnham, "A class V flextensional transducer: The cymbal," Ultrasonics, 37, 387-393 (1999). https://doi.org/10.1016/S0041-624X(99)00021-9
  8. R. E. Newnham, A. Dogan, D. C. Markley, J. F. Tressler, J. Zhang, E. Uzgur, R. J. Meyer Jr., A. C. Hladky-Hennion, and W. J. Hughes, "Size effects in capped ceramic underwater sound projectors," Ocean. Conf. Rec. 4, 2315-2321 (2002).
  9. J. Zhang, W. J. Hughes, R. J. Meyer Jr., K. Uchino, and R. E. Newnham, "Cymbal array: A broad band sound projector," Ultrasonics, 37, 523-529 (2000). https://doi.org/10.1016/S0041-624X(99)00111-0
  10. J. F. Tressler, R. E. Newnham, and W. J. Hughes, "Capped ceramic underwater sound projector: The 'cymbal' transducer," J. Acoust. Soc. Am. 105, 591-600 (1999). https://doi.org/10.1121/1.426249
  11. R. E. Newnham, J. Zhang, and R. J. Meyer Jr., "Cymbal transducers: A review," IEEE Int. Symp. Appl. Ferroelectr. 1, 29-32 (2000).
  12. J. Zhang, A. C. Hladky-Hennion, W. J. Hughes, and R. E. Newnham, "Modeling and underwater characterization of cymbal transducers and arrays," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 48, 560-568 (2001). https://doi.org/10.1109/58.911739
  13. L. Denghua and Y. Xi, "Cymbal transducer array for hydrophone applications," Ferroelectrics, 263, 131-136 (2001). https://doi.org/10.1080/00150190108225188
  14. J. F. Tressler, T. R. Howarth, and W. L. Carney, "Thin, lightweight electroacoustic projector for low frequency underwater applications," J. Acoust. Soc. Am. 116, 1536-1543 (2004). https://doi.org/10.1121/1.1778742
  15. J. L. Butler and C. H. Sherman, Transducers and Arrays for Underwater Sound (Springer, Switzerland, 2016), pp. 547, 552.
  16. H. Shim and Y. Roh, "Design and fabrication of a wideband cymbal transducer for underwater sensor networks," Sensors, 19, 4659 (2019). https://doi.org/10.3390/s19214659
  17. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers (Peninsula Publishing, Los Altos, CA, 1988), pp. 11-43.
  18. H. W. Altland, "Regression analysis: Statistical modeling of a response variable," Technometrics, 41, 367-368 (1999). https://doi.org/10.1080/00401706.1999.10485936
  19. D. C. Montgomery, Design and Analysis of Experiments (John Wiley & Sons, New York, 2012), pp. 394-410.
  20. H. Kim and Y. Roh, "Design and fabrication of a wideband Tonpilz transducer with a void head mass," Sens. Actuators, A: Phys, 239, 137-143 (2016). https://doi.org/10.1016/j.sna.2016.01.029
  21. A. D. Belegudu and T. R. Chandrupatla, Optimization Concepts and Applications in Engineering (Cambridge University Press, New York, 2014), pp. 424-460.
  22. Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti, "Scatter search and local NLP solvers: A multistart framework for global optimization", INFORMS Journal on computing, 19, 328-340 (2007). https://doi.org/10.1287/ijoc.1060.0175