DOI QR코드

DOI QR Code

Trace Metals in Surface Sediments of Garolim Bay, Korea

가로림만 표층 퇴적물 내 미량금속 분포 특성

  • PARK, KYOUNGKYU (Department of Marine Environmental Science, Chungnam National University) ;
  • CHOI, MANSIK (Department of Marine Environmental Science, Chungnam National University) ;
  • JOE, DONGJIN (Department of Marine Environmental Science, Chungnam National University) ;
  • JANG, DONGJUN (Department of Marine Environmental Science, Chungnam National University) ;
  • PARK, SOJUNG (Department of Marine Environmental Science, Chungnam National University)
  • 박경규 (충남대학교 해양환경과학과) ;
  • 최만식 (충남대학교 해양환경과학과) ;
  • 조동진 (충남대학교 해양환경과학과) ;
  • 장동준 (충남대학교 해양환경과학과) ;
  • 박소정 (충남대학교 해양환경과학과)
  • Received : 2020.03.31
  • Accepted : 2020.05.20
  • Published : 2020.05.31

Abstract

In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.

가로림만 퇴적물에서 미량금속의 인위적인 영향을 평가하기 위하여 2010년과 2015년 총 77개의 표층 퇴적물 시료를 채취하여 물리적 특성 요소(입도 및 비표면적)와 지화학적 요소(주성분(Al, Ca, Fe, K, Ba) 및 미량금속(Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), 유기탄소 및 탄산칼슘)들을 분석하였다. 가로림만 표층 퇴적물의 평균 입도는 0.51-5.58 Ø(평균 3.98 Ø) 범위였으며 외만에서부터 내만으로 증가하였고, 수로에서 육지 방향으로 증가하였다. 일부 원소를 제외한 대부분의 금속 농도는 입자의 크기가 작아지고 비표면적이 증가함에 따라 증가하였다. 미량금속의 농도를 조절하는 요인을 추정하기 위하여 요인분석(factor analysis)을 실시하여, 총 3개의 요인을 추출(총 변이의 92.7%) 하였다. 요인 1은 총 변이의 71.3%를 설명하였는데 입도 요인이었고, 요인 2는 총 변이의 14.2%를, 요인 3에서는 총 변이의 7.2%를 설명하였다. 배경농도를 이용하여 농축인자를 계산하였다. 농축인자가 1.5 이상인 금속과 그 시료 수는 Cr 4개(정점 1, 16, 27, 39)와 Pb 1개(정점 39)였으나 이 들 금속에 대한 용출 금속 농도에서는 타 시료와 차이가 없었다. 가로림만의 총 금속 농도에 대한 1M HCl 용출 금속 농도의 백분율은 Pb~Co>Cu>Zn~Mn>Ni>Cr 순서로 감소하였으며 Pb은 입도에 따른 변화를 보였으나 다른 금속들은 모래를 제외하면 매우 일정한 값을 보였다. 이 값을 오염된 지역 및 청정 해역과 비교하면 모든 지역에서 Cu, Zn 및 Pb의 농도 수준과 관련없이 금속별 백분율이 유사하였다. 이는 1M HCl 용액과 퇴적물 구성 성분 사이의 반응 여부에 따른 결과라고 판단되고, 농축 정도를 판단하는데 이 용출 비율을 사용하는 것은 한계가 있음을 나타낸다.

Keywords

References

  1. Calmano, W., J. Hong and U. Forstner, 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci. & Tech., 28(8-9): 223-235. https://doi.org/10.2166/wst.1993.0622
  2. Calvert, S.E., 1976. Chemical Oceanography. Vol. 6. Elsevier, pp. 187-280.
  3. Cha, H.J., M.S. Choi, C.B. Lee and D.H. Shin, 2007. Geochemistry of surface sediments in the southwestern East/Japan Sea. J. of Asian Earth Sci., 29(5-6): 685-697. https://doi.org/10.1016/j.jseaes.2006.04.009
  4. Chae, J.S., M.S. Choi, Y.H. Song, I.K. Um and J.G. Kim, 2014. Source identification of heavy metal contamination using metal association and Pb isotopes in Ulsan Bay sediments, East Sea, Korea. Mar. Poll. Bull., 88(1-2): 373-382. https://doi.org/10.1016/j.marpolbul.2014.07.066
  5. Chester, R. and F.G. Voutsinou, 1981. The initial assessment of trace metal pollution in coastal sediment. Mar. Poll. Bull., 12: 84-91. https://doi.org/10.1016/0025-326X(81)90198-3
  6. Chester, R., M. Nimmo, G.R. Fones, S. Keyse and Z. Zhang, 2000. Trace metal chemistry of particulate aerosols from the UK mainland coastal rim of the NE Irish sea. Atmos. Environ., 34(6): 949-958. https://doi.org/10.1016/S1352-2310(99)00234-4
  7. Cho, Y.G., C.B. Lee and M.S. Choi, 1999. Geochemistry of surface sediments off the southern and western coasts of Korea. Mar. Geol., 159: 111-129. https://doi.org/10.1016/S0025-3227(98)00194-7
  8. Choi M.S., S.H. Lee, C.B. Lee and Y.G. Cho, 1996. Trace metals in sediments of the Keum River. Kor. J. of Quatern. Res., 10(1): 27-52.
  9. Choi, M.S., H.I. Yi, S.Y. Yang, C.B. Lee and H.J. Cha, 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Mar. Chem., 107(2): 255-274. https://doi.org/10.1016/j.marchem.2007.07.008
  10. Choi, M.S., J.H. Chun, H.J. Woo and H.I. Yi, 1999. Change of heavy metals and sediment facies in surface sediments of the Shihwa Lake. J. of the Kor. Environ. Sci. Soc., 8(5): 593-600.
  11. Divya, P. and M. Kumar, 2018. Heavy metal speciation leaching and toxicity status of a tropical rain fed river Damodar India. Environ. Geochem. and Health, 40(6): 2303-2324. https://doi.org/10.1007/s10653-018-0097-9
  12. Fang, T.H., J.Y. Li, H.M. Feng and H.Y. Chen, 2009. Distribution and contamination of trace metals in surface sediments of the East China Sea. Mar. Environ. Res., 68(4): 178-187. https://doi.org/10.1016/j.marenvres.2009.06.005
  13. Horowitz, A.J. and K.A. Elrick, 1987. The relation of stream sediement surface area, grain size, and composition to trace element chemistry. App. Geochem., 2: 437-451. https://doi.org/10.1016/0883-2927(87)90027-8
  14. Horowitz, A.J., 1991. A primer on sediment-trace element chemistry(2ed.). CRC Press, 144 pp.
  15. Huang, P., T. Li, A. Li, X. Yu and N. Hu, 2014. Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea. Conti. Shelf Res., 73: 1-13. https://doi.org/10.1016/j.csr.2013.11.014
  16. Jeon, S.G. and Y.G. Cho, 2002. Some heavy metal concentration of surface sediments from the southwestern coast of Korea. J. of the Environ. Sci., 11(12): 1299-1305.
  17. Jeong, H., K.T. Kim, E.S. Kim, K. Ra and S.Y. Lee, 2016. Sediment quality assessment for heavy metals in streams around the Shihwa Lake. J. of the Kor. Soc. for Mar. Environ. and Energy, 19(1): 25-36. https://doi.org/10.7846/JKOSMEE.2016.19.1.25
  18. Kim, K.T., H.S. Shin, C.R. Lim, Y.G. Cho, G.H. Hong, S.H. Kim, D.B. Yang and M.S. Choi, 2000. Geochemistry of Pb in surface sediments of the Yellow Sea; contents and speciation. J. of the Kor. Soc. of Oceanogr., 35: 179-191.
  19. Lee, J.H., J.S. Yi, B.S. Kim, C.B. Lee and C.H. Koh, 1998. Characteristics of Metal Distribution in the Sediment in Kyeonggi Bay, Korea. J. of the Kor. Soc. of Oceanogr., 3(3): 103-111.
  20. Lee, M.K., W. Bae, I.K. Um, H.S. Jung, 2004. Characteristics of heavy metal distribution in sediments of Youngil Bay, Korea. Environ. Engin. Res., 26(5): 543-551.
  21. Li, X., L. Liu, Y. Wang, G. Luo, X. Chen, X. Yang, B. Gao and X. He, 2012. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China. PLos ONE, 7(6): e39690. https://doi.org/10.1371/journal.pone.0039690
  22. Lim, D., J.Y. Choi, H.S. Jung, H.Y. Choi and Y.O. Kim, 2007. Natural background level analysis of heavy metal concentration in Korean coastal sediments. Ocean and Polar Res., 29(4): 379-389. https://doi.org/10.4217/OPR.2007.29.4.379
  23. Loring, D.H., 1990. Lithium-a new approach for the granulometric normalization of trace metal data. Mar. Chem., 29: 155-168. https://doi.org/10.1016/0304-4203(90)90011-Z
  24. Nam, H.J., S. Heo, S.Y. Park, U.K. Hwang, J.S. Park and H.K. Lee, 2012. The physico-chemical characteristics in the Garorim Bay, Korea. J. of the Kor. Soc. of Mar. Environ. & Safety, 18(2): 101-114. https://doi.org/10.7837/kosomes.2012.18.2.101
  25. Park, J.K., M.S. Choi, Y. Song and D.I. Lim, 2017. Tracing the origin of Pb using stable Pb isotopes in surface sediments along the Korean Yellow Sea Coast. Ocean Sci. J., 52(2): 177-192. https://doi.org/10.1007/s12601-017-0020-9
  26. Park, S.Y., H.C. Kim, P.J. Kim, G.S. Park, J.Y. Ko, S.B. Jeon, S.M. Lee and J.S. Park, 2009. Long-term variation and characteristics of water quality in the Garolim coastal areas of Yellow Sea, Korea. J. of the Kor. Soc. of Mar. Environ. & Safety, 15(4): 315-328.
  27. Ra, K., K.T. Kim, E.S. Kim, E.J. Won, K.I. Lim, S.Y. Park and K.H. Shin, 2009. Geochemistry of trace metals in Shihwa Lake sediment. Kor. Soc. for Mar. Environ. & Energy, 175-180.
  28. Ra, K., E.S. Kim, J.K. Kim, K.T. Kim, J.M. Lee and E.Y. Kim, 2013. Distribution and Pollution Assessment of Trace Metals in Core Sediments from the Artificial Lake Shihwa, Korea. Ocean and Polar Res., 35(2): 69-83. https://doi.org/10.4217/OPR.2013.35.2.069
  29. Ridgway, J. and G. Shimmield, 2002. Estuaries as Repositories of Historical Contamination and their Impact on Shelf Seas. Est. Coast. and Shelf Sci., 55(6): 903-928. https://doi.org/10.1006/ecss.2002.1035
  30. Roussiez, V., W. Ludwig, J.-L. Probst and A. Monaco, 2005. Background levels of heavy metals in surficial sediments of the Gulf of Lions(NW Mediterranean): An approach based on $^{133}Cs$ normalization and lead isotope measurements. Environ. Poll., 138: 167-177. https://doi.org/10.1016/j.envpol.2005.02.004
  31. Schulz H.D. and M. Zabel, 2006. Marine Geochemistry(2ed.). Springer Verlag. 574 pp.
  32. Schropp, S.J., F.G. Lewis, H.L. Windom and J.D. Ryan, 1990. Interpretation of metal concentrations in estuarine sediments of Florida using Aluminum as a reference element. Estuaries, 13(3): 227-235. https://doi.org/10.2307/1351913
  33. Shin, D.H., H.I. Yi, S.J. Han, J.K. Oh and S.J. Kwon, 1998. Transport paths of surface sediment on the tidal flat of Garolim Bay, West coast of Korea. J. of the Kor. Soc. of Oceanogr., 3(2): 59-70.
  34. Song, Y. and M.S. Choi, 2009. REE geochemistry of fine-grained sediments from major rivers around the Yellow Sea. Chem. Geol., 266: 328-342. https://doi.org/10.1016/j.chemgeo.2009.06.019
  35. Song, Y., M.S. Choi and Y.W. Ahn, 2011. Trace metals in Chun-su Bay sediments. J. of the Kor. Soc. of Oceanogr., 16: 169-179.
  36. Song, Y., M.S. Choi, J.Y. Lee and D.J. Jang, 2014. Regional background concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb) in coastal sediments of the South Sea of Korea. Sci. of the Total Environ., 482: 80-91. https://doi.org/10.1016/j.scitotenv.2014.02.068
  37. Song, Y. and M.S. Choi, 2017. Assessment of heavy metal contamination in sediments along the coast of South Korea using Cs-normalized background concentrations. Mar. Poll. Bull., 117: 532-537. https://doi.org/10.1016/j.marpolbul.2017.02.019
  38. Sun, C.I., Y.J. Lee, J.H. An and Y.W. Lee, 2014. Speciation and ecological risk assessment of trace metals in surface sediments of the Masan Bay. J. of the Kor. Soc. of Oceanogr., 19(2): 155-163.
  39. Sun, C.I., D.J. Kim, Y.W. Lee and S.S. Kim, 2015. Pollution and ecological risk assessment of trace metals in surface sediments of the Ulsan-Onsan Coast. J. of the Kor. Soc. for Mar. Environ. & Energy, 18: 245-253. https://doi.org/10.7846/JKOSMEE.2015.18.4.245
  40. Szefer, P., G.P. Glasby, J. Pempkowiak and R. Kaliszan, 1995. Extraction studies of heavy-metal pollutants in surficial sediments from the southern Baltic Sea off Poland. Chem. Geol., 120: 111-126. https://doi.org/10.1016/0009-2541(94)00103-F
  41. Um, I.K., D.I. Lim, M.K. lee, S.K. Jeon and H.S. Jung, 2003. Spatial variability and contents of metals in the surficial sediments of Youngil Bay, East Coast of Korea. J. of Kor. Earth Sci. Soc., 24(5): 477-490.
  42. Um, I.K., M.S. Choi, J.J. Bahk and Y.H. Song, 2013. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea. Mar. Geol., 346: 208-219. https://doi.org/10.1016/j.margeo.2013.09.007
  43. Wi, C.W., J.H. Lee and H.C. Shin, 2014. Spatio-temporal distribution of benthic polychaetous communities and their health conditions in Garolim Bay, West coast of Korea. J. of the Kor. Soc. of Oceanogr., 19(4): 256-264.
  44. Woo, H.J., J.H. Ryu and J.H. Cho, 2009. Hydro-hypsographic analysis for understanding of flushing characteristics in Garolim Bay. J. of Wetlands Res., 11(2): 39-46.
  45. Yang, S.Y., H.S. Jung, D.I. Lim and C.X. Li, 2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Sci. Rev., 63(1-2): 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  46. Yuan, C., J. Shi, B. He, J. Liu, L. Liang and G. Jiang, 2004. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environ. Int., 30(6): 769-783. https://doi.org/10.1016/j.envint.2004.01.001
  47. Yuan, X., H. Huang, G. Zeng, H. Li, J. Wang, C. Zhou, H. Zhu, X. Pei, Z. Liu and Z. Liu, 2011. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Biores. Technol., 102(5): 4104-4110. https://doi.org/10.1016/j.biortech.2010.12.055
  48. Yuan, H., J. Song, X. Li, N. Li and L. Duan, 2012. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Mar. Poll. Bull., 64(10): 2151-2159. https://doi.org/10.1016/j.marpolbul.2012.07.040