DOI QR코드

DOI QR Code

Optimal Design of the Stacking Sequence on a Composite Fan Blade Using Lamination Parameter

적층 파라미터를 활용한 복합재 팬 블레이드의 적층 패턴 최적설계

  • Sung, Yoonju (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Jun, Yongun (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Jungsun (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2020.02.19
  • Accepted : 2020.05.19
  • Published : 2020.06.01

Abstract

In this paper, approximation and optimization methods are proposed for the structural performance of the composite fan blade. Using these methods, we perform the optimal design of the stacking sequence to maximize stiffnesses without changing the mass and the geometric shape of the composite fan blade. In this study, the lamination parameters are introduced to reduce the design variables and space. From the characteristics of lamination parameters, we generate response surface model having a high fitness value. Considering the requirements of the optimal stacking sequence, the multi-objective optimization problem is formulated. We apply the two-step optimization method that combines gradient-based method and genetic algorithm for efficient search of an optimal solution. Finally, the finite element analysis results of the initial and the optimized model are compared to validate the approximation and optimization methods based on the lamination parameters.

본 논문에서는 복합재 팬 블레이드의 구조적 성능에 대한 근사 및 최적설계 기법을 제안하였다. 그리고 이들을 활용하여 복합재 팬 블레이드의 질량 및 형상의 변화 없이 강성을 최대화하기 위한 적층 패턴의 최적설계를 수행하였다. 이 때 설계 변수 및 설계 영역을 축소하기 위하여 적층 파라미터를 도입하였고, 적층 파라미터의 특성을 활용하여 높은 적합도를 갖는 반응표면 근사모델을 생성하였다. 또한 효율적인 최적해 탐색을 위해 도함수 기반 방법과 유전자 알고리즘을 결합한 2단계 최적화 방법을 적용하였으며, 다양한 요구조건들을 고려한 다목적 최적설계를 수행하였다. 마지막으로는 초기 모델과 최적설계 모델의 유한요소해석 결과를 비교하여 적층 파라미터 기반의 근사 및 최적설계 기법을 검증하였다.

Keywords

References

  1. Coroneos, R. M., "Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine," NASA/TM-2012-217632, 2012.
  2. Jeong, J. Y., Cho, Y. S. and Ha, S. K., "Design of Optimal Fiber Angles in the Laminated Composite Fan Blades," Transactions of the KSME, A, Vol. 21, No. 11, 1997, pp. 1765-1772.
  3. Ghiasi, H., Pasini, D. and Lessard, L., "Optimum Stacking Sequence Design of Composite Materials Part 1 : Constant Stiffness Design," Composite Structures, Vol. 90, No. 1, 2009, pp. 1-11. https://doi.org/10.1016/j.compstruct.2009.01.006
  4. Liu, D., Toropov, V. V., Querin, O. M. and Barton, D. C., "Bilevel Optimization of Blended Composite Wing Panels," Journal of Aircraft, Vol. 48, No. 1, 2011, pp. 107-118. https://doi.org/10.2514/1.C000261
  5. Enrique, H. J., Weaver, P. M. and Friswell, M. I., "Optimization of Long Anisotropic Laminated Fiber Composite Pannels with T-shaped Stiffeners," AIAA Journal, Vol. 45, No. 10, 2007, pp. 2497-2509. https://doi.org/10.2514/1.26321
  6. Irisarri, F. X., Abdalla, M. M. and Gurdal, Z., "Improved Shepard's Method for the Optimization of Composite Structures," AIAA Journal, Vol. 49, No. 12, 2011, pp. 2726-2736. https://doi.org/10.2514/1.J051109
  7. Miki, M., "Design of Laminated Fibrous Composite Plates with Required Flexural Stiffness," ASTM STP 864, 1985, pp. 387-400.
  8. Gurdal, Z., Haftka, R. T. and Hajela, P., Design and Optimization of Laminated Composite Materials, Wiley-Interscience, NewYork, 1999.
  9. Fukunaga, H. and Vanderplaats, G. N., "Stiffness Optimization of Orthotropic Laminated Composites Using Lamination Parameters," AIAA Journal, Vol. 29, No. 4, 1991, pp. 641-646. https://doi.org/10.2514/3.59931
  10. Liu, D. and Toropov, V. V., "Weight and Mechanical Performance Optimization of Blended Composite Wing Panels Using Lamination Parameters," Structural and Multidisciplinary Optimization, Vol. 52, No. 3, 2015, pp. 549-562. https://doi.org/10.1007/s00158-015-1244-x
  11. Todoroki, A. and Ishikawa, T., "Design of Experiments for Stacking Sequence Optimizations with Genetic Algorithm Using Response Surface Approximation," Composite Structures, Vol. 64, No. 3-4, 2004, pp. 349-357. https://doi.org/10.1016/j.compstruct.2003.09.004
  12. Yamazaki, K., "Two-Level Optimization Technique of Composite Laminate Panels by Genetic Algorithms," Proceedings of 37th AIAA/ASME/AHS/ ASC Structures, Structural Dynamics, and Materials Conference, 1996, pp. 1882-1887.
  13. Diaconu, C. G., Sato, M. and Sekine, H., "Feasible Region in General Design Space of Lamination Parameters for Laminated Composites," AIAA Journal, Vol. 40, No. 3, 2002, pp. 559-565. https://doi.org/10.2514/2.1683
  14. Liu, B., Haftka, R. T., Akgun, M. A. and Todoroki, A., "Permutation genetic algorithm for stacking sequence design of composite laminates," Computer Methods in Applied Mechanics and Engineering, Vol. 186, No. 2-4, 2000, pp. 357-372. https://doi.org/10.1016/S0045-7825(99)90391-2
  15. Bates, S. T. and Sienz, J., "Formulation of the Optimal Latin Hypercube Design of Experiments Using a Permutation Genetic Algorithm," 45th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2004, pp. 1-7.