DOI QR코드

DOI QR Code

Development of a Multifunctional Design Concept to Improve Constructed Wetland Performance

인공습지의 성능향상을 위한 다기능 설계기법 개발

  • Reyes, N.J.D.G. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Choi, H.S. (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Kim, L.H. (Department of Civil and Environmental Engineering, Kongju National University)
  • ;
  • 최혜선 (공주대학교 토목 환경 공학과) ;
  • 김이형 (공주대학교 토목 환경 공학과)
  • Received : 2020.04.29
  • Accepted : 2020.05.25
  • Published : 2020.05.31

Abstract

Constructed wetlands (CWs) are widely used to solve water quality problems caused by diffuse pollution from agricultural areas; however, phytoplankton blooms in CW systems can occur due to long hydraulic retention time (HRT), high nutrient loading, and exposure to sunlight. This study was conducted to evaluate the efficiency of a CW designed to treat agricultural diffuse pollution and develop a design concept to improve the nature-based capabilities of the system. Monitoring was conducted to assess contribution of individual wetland components (i.e. water, sediments, and plants) in the treatment performance of the system. During dry days, the turbidity and particulates concentration in the CW increased by 80 to 197% and 10 to 87%, respectively, due to the excessive growth of phytoplankton. On storm events, the concentration of particulates, organics, and nutrients were reduced by 43% to 70%, 22% to 49%, and 15% to 69% due to adequate water circulation and constant flushing of pollutants in the system. Based on the results, adequate water circulation is necessary to improve the performance of the CW. Free water surface CWs are usually designed to have a constant water level; however, the climate in South Korea is characterized by distinct dry and rainy seasons, which may not be suitable for this conventional design. This study presented a concept of multifunctional design in order to solve current CW design problems and improve the flood control, water quality management, and environmental functions of the facility.

농업비점오염에 의한 수질문제 해결을 위하여 인공습지 조성이 늘어나고 있으나 긴 체류시간과 긴 일조량 등으로 인하여 습지 내 조류 발생 등의 문제가 지속적으로 발생하고 있다. 본 연구는 농업 비점오염원관리를 위하여 조성된 인공습지의 효율을 평가하여 자연기반 능력이 향상된 고도화된 인공습지 개선방안을 제시하고자 수행되었다. 인공습지의 성능평가는 구성성분(물, 퇴적물 및 식물)의 모니터링을 통해 구성성분이 시스템의 처리 성능에 주는 기여도 평가를 통해 수행되었다. 건기시에는 식물성 플랑크톤의 과다성장, 긴 체류시간 및 일조량 과다로 습지내 탁도 및 미립자 농도가 각각 80~197 % 및 10~87 %정도 증가하는 것으로 나타났다. 그러나 강우시에는 습지내 적절한 물 순환과 지속적인 물 흐름으로 미립자, 유기물 및 영양분의 농도가 43 ~ 70 %, 22 ~ 49 %, 15 ~ 69 % 정도 감소하는 것으로 나타났다. 이러한 연구결과로 볼 때 인공습지가 가진 문제해결을 위해서는 자연습지가 가진 안정적 물 흐름이 필요하다는 것을 알수 있다. 그러나 일정수심을 유지하도록 되어있는 인공습지 설계기준은 건기와 강우기가 뚜렷하게 나타나는 한국적 기후상황에 타당하지 않다. 따라서 본 연구에서는 인공습지가 가진 문제를 해결하고 홍수관리, 수질 관리 및 환경 기능을 지속적으로 유지할 수 있도록 다기능 설계기법을 개념화하였다.

Keywords

References

  1. Alihan, J.C., Maniquiz-Redillas, M., Choi, J., Flores, P.E., Kim, L.-H., 2017. Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands. J. Wetl. Res. https://doi.org/10.17663/jwr.2017.19.1.037
  2. APHA, 1990. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC. Stand. Methods. https://doi.org/ISBN 9780875532356
  3. Bae, S., Seo, D., 2018. Analysis and modeling of algal blooms in the Nakdong River, Korea. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2018.01.019
  4. Boyd, C.E., 2015. Phosphorus, in: Water Quality. Springer, Cham, pp. 243-261. https://doi.org/https://doi.org/10.1007/978-3-319-17446-4
  5. Carter, M.R.; Gregorich, E.G., 2007. Soil sampling and methods of analysis. CRC Press, Boca Raton.
  6. Chaurand, G., 2019. Performance of subsurface flow wetlands for the treatment of airport runoff. Aalto University.
  7. Chun, Y.M., Choi, Y.D., 2009. Expansion of Phragmites australis (Cav.) Trin. ex Steud. (common reed) into Typha spp. (cattail) wetlands in northwestern Indiana, USA. J. Plant Biol. https://doi.org/10.1007/s12374-009-9024-z
  8. Dong, Y., Kayranli, B., Scholz, M., Harrington, R., 2013. Nutrient release from integrated constructed wetlands sediment receiving farmyard run-off and domestic wastewater. Water Environ. J. 27, 439-452. https://doi.org/10.1111/j.1747-6593.2012.00361.x
  9. Dzakpasu, M., Wang, X., Zheng, Y., Ge, Y., Xiong, J., Zhao, Y., 2015. Characteristics of nitrogen and phosphorus removal by a surface-flow constructed wetland for polluted river water treatment. Water Sci. Technol. https://doi.org/10.2166/wst.2015.049
  10. Emery, S.L., Perry, J.A., 1995. Aboveground Biomass and Phosphorus Concentrations of Lythrum salicaria (Purple Loosestrife) and Typha spp. (Cattail) in 12 Minnesota Wetlands. Am. Midl. Nat. https://doi.org/10.2307/2426309
  11. Ge, Z., An, R., Fang, S., Lin, P., Li, C., Xue, J., Yu, S., 2017. Phragmites australis + Typha latifolia Community Enhanced the Enrichment of Nitrogen and Phosphorus in the Soil of Qin Lake Wetland. Scientifica (Cairo). https://doi.org/10.1155/2017/8539093
  12. Geranmayeh, P., Johannesson, K.M., Ulen, B., Tonderski, K.S., 2018. Particle deposition, resuspension and phosphorus accumulation in small constructed wetlands. Ambio. https://doi.org/10.1007/s13280-017-0992-9
  13. Goulding, K.W.T., 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag. https://doi.org/10.1111/sum.12270
  14. Hashmi, M.Z., Yu, C., Shen, H., Duan, D., Shen, C., Lou, L., Chen, Y., 2013. Risk assessment of heavy metals pollution in agricultural soils of siling reservoir watershed in Zhejiang province, China. Biomed Res. Int. https://doi.org/10.1155/2013/590306
  15. Jarvie, H.P., Sharpley, A.N., Withers, P.J.A., Scott, J.T., Haggard, B.E., Neal, C., 2013. Phosphorus Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and "Postnormal" Science. J. Environ. Qual. https://doi.org/10.2134/jeq2012.0085
  16. Jeke, N.N., Zvomuya, F., Cicek, N., Ross, L., Badiou, P., 2019. Nitrogen and Phosphorus Phytoextraction by Cattail (Typha spp.) during Wetland-based Phytoremediation of an End-of-Life Municipal Lagoon. J. Environ. Qual. https://doi.org/10.2134/jeq2018.05.0184
  17. Johannesson, K.M., Kynkaanniemi, P., Ulen, B., Weisner, S.E.B., Tonderski, K.S., 2015. Phosphorus and particle retention in constructed wetlands-A catchment comparison. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2014.08.014
  18. Jung, S., Shin, M., Kim, J., Eum, J., Lee, Y., Lee, J., Choi, Y., You, K., Owen, J., Kim, B., 2016. The effects of Asian summer monsoons on algal blooms in reservoirs. Inl. Waters. https://doi.org/10.5268/IW-6.3.967
  19. Kasak, K., Kill, K., Parn, J., Mander, U., 2018. Efficiency of a newly established in-stream constructed wetland treating diffuse agricultural pollution. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2018.05.015
  20. Kim, S., Chung, S., Park, H., Cho, Y., Lee, H., 2019. Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water (Switzerland). https://doi.org/10.3390/w11061163
  21. King, K.W., Williams, M.R., Macrae, M.L., Fausey, N.R., Frankenberger, J., Smith, D.R., Kleinman, P.J.A., Brown, L.C., 2015. Phosphorus Transport in Agricultural Subsurface Drainage: A Review. J. Environ. Qual. https://doi.org/10.2134/jeq2014.04.0163
  22. Lee, Jeong-Yong; Kang, Chang-Guk; Lee, So-Young; Kim, L.-H., 2011. Application of Free Water Surface Constructed Wetland for NPS COntrol in Livestock Watershed Area. J. Wetl. Res. 13, 481-488. https://doi.org/https://doi.org/10.17663/JWR.2011.13.3.481
  23. Luo, K., Wu, C., Zheng, H., Hu, X., He, Q., 2019. Analyzing the algal bloom risk and its relationship with environmental variables in urban landscape water, in: IOP Conference Series: Earth and Environmental Science. https://doi.org/10.1088/1755-1315/376/1/012071
  24. Mallin, M.A., McIver, M.R., Robuck, A.R., Dickens, A.K., 2015. Industrial Swine and Poultry Production Causes Chronic Nutrient and Fecal Microbial Stream Pollution. Water. Air. Soil Pollut. https://doi.org/10.1007/s11270-015-2669-y
  25. Maniquiz, M.C., Choi, J.Y., Lee, S.Y., Kang, C.G., Yi, G.S., Kim, L.H., 2012. System design and treatment efficiency of a surface flow constructed wetland receiving runoff impacted stream water. Water Sci. Technol. https://doi.org/10.2166/wst.2012.869
  26. Mercado, J.M.R., Maniquiz-Redillas, M.C., Kim, L.-H., 2013. Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area. J. Wetl. Res. https://doi.org/10.17663/jwr.2013.15.2.215
  27. Mercado, J.M.R., Maniquiz-Redillas, M.C., Kim, L.H., 2017. Assessment and development of design criteria for a hybrid stormwater treatment system. Desalin. Water Treat. https://doi.org/10.5004/dwt.2017.11447
  28. Mulligan, C., Fukue, M., Sato, Y., 2009. Sediments contamination and sustainable remediation, Sediments Contamination and Sustainable Remediation. https://doi.org/10.1201/9781420062236
  29. Mwanyika, F.T., Ogendi, G.M., Kipkemboi, J.., 2016. Removal of heavy metals from wastewater by a constructed wetland system at Egerton University, Kenya. IOSR J. Environ. Sci. Toxicol. Food Technol. 10, 15-20. https://doi.org/10.9790/2402-1009031522
  30. Reddy, K.R., D'Angelo, E.M., 1997. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands, in: Water Science and Technology. https://doi.org/10.1016/S0273-1223(97)00046-2
  31. Rehman, F., Pervez, A., Khattak, B.N., Ahmad, R., 2017. Constructed Wetlands: Perspectives of the Oxygen Released in the Rhizosphere of Macrophytes. Clean - Soil, Air, Water. https://doi.org/10.1002/clen.201600054
  32. Ribaudo, M., Delgado, J., Hansen, L.R., Livingston, M., Mosheim, R., Williamson, J., 2012. Nitrogen in agricultural systems: Implications for conservation policy, in: Nitrogen Use in U.S. Agriculture: Implications and Management. https://doi.org/10.2139/ssrn.2115532
  33. Sfakianakis, D.G., Renieri, E., Kentouri, M., Tsatsakis, A.M., 2015. Effect of heavy metals on fish larvae deformities: A review. Environ. Res. https://doi.org/10.1016/j.envres.2014.12.014
  34. Shi, T., Ma, J., Wu, X., Ju, T., Lin, X., Zhang, Y., Li, X., Gong, Y., Hou, H., Zhao, L., Wu, F., 2018. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Saf. https://doi.org/10.1016/j.ecoenv.2018.08.016
  35. Sima, J., Svoboda, L., Seda, M., Krejsa, J., Jahodova, J., 2017. Removal of selected risk elements from wastewater in a horizontal subsurface flow constructed wetland. Water Environ. J. https://doi.org/10.1111/wej.12269
  36. Song, X., Ehde, P.M., Weisner, S.E.B., 2019. Effects of water depth and phosphorus availability on nitrogen removal in agricultural wetlands. Water (Switzerland). https://doi.org/10.3390/W11122626
  37. Srivastava, A., Ahn, C.Y., Asthana, R.K., Lee, H.G., Oh, H.M., 2015. Status, alert system, and prediction of cyanobacterial bloom in South Korea. Biomed Res. Int. https://doi.org/10.1155/2015/584696
  38. Su, X., Wang, H., Zhang, Y., 2013. Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China. Water Resour. Manag. https://doi.org/10.1007/s11269-013-0330-3
  39. Tian, S., Wang, Z., Shang, H., 2011. Study on the self-purification of Juma River, in: Procedia Environmental Sciences. https://doi.org/10.1016/j.proenv.2011.12.199
  40. Tobio, Jevelyn Ann S; Maniquiz-Redillas, Marla C; Lee, Yuwha; Kim, L.-H., 2012. Characteristics of Pollulant Concentration from Livestock Wastewater Effluent Combined With Stormwater Runoff. J. Korean Soc. Water Environ. 28, 896-901.
  41. Travaini-Lima, F., Sipauba-Tavares, L.H., 2012. Efficiency of a constructed wetland for wastewaters treatment. Acta Limnol. Bras. https://doi.org/10.1590/s2179-975x2012005000043
  42. Ulrich, K.E., Burton, T.M., 1988. An experimental comparison of the dry matter and nutrient distribution patterns of Typha latifolia L., Typha angustifolia L., Sparganium eurycarpum Engelm. and Phragmites australis (Cav.) Trin. ex Steudel. Aquat. Bot. https://doi.org/10.1016/0304-3770(88)90093-9
  43. Vymazal, J., Kropfelova, L., 2008. Nitrogen and phosphorus standing stock in Phalaris arundinacea and Phragmites australis in a constructed treatment wetland: 3-year study, in: Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340701787662
  44. Weisner, S.E.B., Eriksson, P.G., Graneli, W., Leonardson, L., 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio. https://doi.org/10.2307/4314237
  45. Yan, Liying, Zhang, S., Lin, D., Guo, C., Yan, Lingling, Wang, S., He, Z., 2018. Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.11.234
  46. Zhang, T., Jiang, R., Deng, Y., 2017. Phosphorus Recovery by Struvite Crystallization from Livestock Wastewater and Reuse as Fertilizer: A Review, in: Physico-Chemical Wastewater Treatment and Resource Recovery. https://doi.org/10.5772/65692
  47. Zhao, Y., Xia, X., Yang, Z., 2013. Growth and nutrient accumulation of Phragmites australis in relation to water level variation and nutrient loadings in a shallow lake. J. Environ. Sci. (China). https://doi.org/10.1016/S1001-0742(12)60004-7
  48. Zhou, Jun, Du, B., Wang, Z., Zhang, W., Xu, L., Fan, X., Liu, X., Zhou, Jing, 2019. Distributions and pools of lead (Pb) in a terrestrial forest ecosystem with highly elevated atmospheric Pb deposition and ecological risks to insects. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2018.08.091