DOI QR코드

DOI QR Code

Efficiency Evaluation of Genetic Algorithm Considering Building Block Hypothesis for Water Pipe Optimal Design Problems

상수관로 최적설계 문제에 있어 빌딩블록가설을 고려한 유전 알고리즘의 효율성 평가

  • Lim, Seung Hyun (Department of Civil Engineering, The University of Suwon/Institute River Environmental Technology) ;
  • Lee, Chan Wook (Department of Civil Engineering, The University of Suwon/Institute River Environmental Technology) ;
  • Hong, Sung Jin (Department of Civil Engineering, The University of Suwon/Institute River Environmental Technology) ;
  • Yoo, Do Guen (Department of Civil Engineering, The University of Suwon/Institute River Environmental Technology)
  • 임승현 (수원대학교 토목공학과/하천환경기술연구소) ;
  • 이찬욱 (수원대학교 토목공학과/하천환경기술연구소) ;
  • 홍성진 (수원대학교 토목공학과/하천환경기술연구소) ;
  • 유도근 (수원대학교 토목공학과/하천환경기술연구소)
  • Received : 2020.03.20
  • Accepted : 2020.05.08
  • Published : 2020.05.31

Abstract

In a genetic algorithm, computer simulations are performed based on the natural evolution process of life, such as selection, crossover, and mutation. The genetic algorithm searches the approximate optimal solution by the parallel arrangement of Schema, which has a short definition length, low order, and high adaptability. This study examined the possibility of improving the efficiency of the optimal solution by considering the characteristics of the building block hypothesis, which are one of the key operating principles of a genetic algorithm. This study evaluated the efficiency of the optimization results according to the gene sequence for the implementation in solving problems. The optimal design problem of the water pipe was selected, and the genetic arrangement order reflected the engineering specificity by dividing into the existing, the network topology-based, and the flowrate-based arrangement. The optimization results with a flowrate-based arrangement were, on average, approximately 2-3% better than the other batches. This means that to increase the efficiency of the actual engineering optimization problem, a methodology that utilizes clear prior knowledge (such as hydraulic properties) to prevent such excellent solution characteristics from disappearing is essential. The proposed method will be considered as a tool to improve the efficiency of large-scale water supply network optimization in the future.

대표적인 메타 휴리스틱 알고리즘 중 하나인 유전알고리즘은 생명체의 자연 진화 과정을 컴퓨터 시뮬레이션하며 이 과정에서 선택, 교차, 그리고 돌연변이가 수행된다. 이 과정에서 유전알고리즘은 정의길이가 짧고, 차수가 낮은 반면, 높은 적응도를 갖는 스키마타의 병렬배열에 의해 최적해에 근접해 간다. 본 연구에서는 유전알고리즘의 핵심 작동원리 중 하나인 빌딩블록가설과 상수관망 시스템이 가지고 있는 공학적, 수리학적 특성을 동시에 고려한 최적해 효율성 제고의 가능성을 살펴보고자 하였다. 즉, 공학적 문제 해결에 있어 유전알고리즘 수행을 위한 유전자의 배치순서에 따른 최적화 결과의 효율성을 평가하였다. 공학적 문제로 상수관로 최적설계 문제를 선택하여 적용하였으며, 유전자 배치순서는 기존배치, 네트워크 위상 기반 배치, 그리고 유량크기 기반 배치로 구분하여 공학적 특이성을 반영하였다. 적용결과 유량 크기 기반 배치를 적용한 최적화 결과가 기존배치에 비하여 평균적으로 약 2-3% 우수한 것으로 나타났다. 이것은, 실제 공학 최적화 문제의 적용성과 효율성을 증대시키기 위해서는 명확한 사전지식(수리학적 특성 등)을 활용하여 가능한 이와 같은 우수한해의 특성이 소멸되지 않도록 하는 장치가 반드시 필요하다는 것을 의미한다. 제안된 방법론은, 향후 대규모 상수관망 최적설계에 있어 효율성 제고를 위한 방안으로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. D. J. Wood, L. S. Reddy, J. E. Funk, "Modeling pipe networks dominated by junctions", Journal of Hydraulic Engineering, Vol.119, No.8, pp.949-958, August 1993. DOI: https://dx.doi.org/10.1061/(ASCE)0733-9429(1993)119:8(949)
  2. U. Shamir, "Optimal design and operation of water distribution systems", Water Resources Research, Vol.10, No.1, pp.27-36, January 1974. DOI: https://doi.org/10.1029/WR010i001p00027
  3. Y. C. Su, L. W. Mays, N. Duan, K. E. Lansey, "Reliability-based optimization model for water distribution systems", Journal of Hydraulic Engineering, Vol.113, No.12, pp.1539-1556, December 1987. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1987)113:12(1539)
  4. K. E. Lansey, L. W. Mays, "Optimization model for water distribution system design" Journal of Hydraulic Engineering, Vol.115, No.10, pp.1401-1418, Octorber 1989. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1989)115:10(1401)
  5. O. Fujiwara, D. B. Khang, "A two‐phase decomposition method for optimal design of looped water distribution networks", Water Resources Research, Vol.26, No.4, pp.539-549, April 1990. DOI: https://doi.org/10.1029/WR026i004p00539
  6. A. Simpson, G. Dandy, L. Murphy, "Genetic algorithms compared to other techniques for pipe optimization", Journal of Water Resources Planning and Management, Vol.120, No.4, pp.423-443, April 1994. DOI: https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)
  7. G. Dandy, A. Simpson, L. Murphy, "An improved genetic algorithm for pipe network optimization", Water Resources Research, Vol.32, No.2, pp.449-458. February 1996. DOI:https://doi.org/10.1029/95WR02917
  8. H. Maier, A. Simpson, A. Zecchin, W. Foong, K. Phang, H. Seah, C. Tan, "Ant colony optimization for design of water distribution systems", Journal of Water Resources Planning and Management, Vol.129, No.3, pp.200-206. March 2003. DOI: https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)
  9. Z. W. Geem, J. H. Kim, G. V. Loganathan, "A new heuristic optimization algorithm: harmony search", Simulation. Vo.76, No.2, pp.60-68, February 2001. DOI:https://doi.org/10.1177/003754970107600201
  10. J. H. Kim, Z. W. Geem, E. S. Kim, "Parameter estimation of the nonlinear muskingum model using harmony search", Journal of the American Water Resources Association, Vol.37, No.5, pp.1131-1138, May 2001. DOI: https://doi.org/10.1111/j.1752-1688.2001.tb03627.x
  11. D. G. Yoo, H. M. Lee, E. H. Lee, J. H. Kim, "Constraint Handling Techniques: Application to Optimal Pipe Size Design Problem", Journal of the Korea Academia-Industrial cooperation Society, Vol.16, No.7, pp.4999-5008, July, 2015. DOI:https://dx.doi.org/10.5762/KAIS.2015.16.7.4999
  12. J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press, 1975. DOI:https://dl.acm.org/doi/book/10.5555/531075
  13. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, addison-wesley, reading, ma, NN Schraudolph and J, 3.1, 1989. DOI:https://dl.acm.org/doi/book/10.5555/534133
  14. B. R. Moon, An easy-learned genetic algorithm, Hanbit Media, 2008.
  15. L. A. Rossman, EPANET 2: users manual, EPA, 2000.
  16. M. Van Dijk, S. J. van Vuuren, J. E. Van Zyl, "Optimising water distribution systems using a weighted penalty in a genetic algorithm", Water Sa, Vol.34, No.5, pp.537-548, October 2008. DOI:https://dx.doi.org/10.4314/wsa.v34i5.180651
  17. C. R. Suribabu, "Differential evolution algorithm for optimal design of water distribution networks", Journal of Hydroinformatics, Vol.12, No.1, pp.66-82, January 2010. DOI:https://dx.doi.org/10.2166/hydro.2010.014
  18. M. Cisty, "Hybrid genetic algorithm and linear programming method for least-cost design of water distribution systems", Water Resources Management, Vol.24, No.1, pp.1-24, January 2010. DOI:https://dx.doi.org/10.1007/s11269-009-9434-1