References
- Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. 2004. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 18: 55-62.
- Turkozu D, Sanlier N. 2017. L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Crit. Rev. Food Sci. Nutr. 57: 1681-1687. https://doi.org/10.1080/10408398.2015.1016141
- Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, et al. 2017. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed. Pharmacother. 95: 1260-1275. https://doi.org/10.1016/j.biopha.2017.09.024
- Adhikary R, Mandal V. 2017. L-theanine: A potential multifaceted natural bioactive amide as health supplement. Asian Pac. J. Trop. Biomed. 7: 842-848. https://doi.org/10.1016/j.apjtb.2017.08.005
- Vuong QV, Stathopoulos CE, Golding JB, Nguyen MH, Roach PD. 2011. Optimum conditions for the water extraction of L-theanine from green tea. J. Sep. Sci. 34: 2468-2474. https://doi.org/10.1002/jssc.201100401
- Vuong QV, Bowyer MC, Roach PD. 2011. L-Theanine: properties, synthesis and isolation from tea. J. Sci. Food Agric. 91: 1931-1939. https://doi.org/10.1002/jsfa.4373
- Kawagishi H, Sugiyama K. 1992. Facile and large-scale synthesis of L-Theanine. Biosci. Biotechnol. Biochem. 56: 689. https://doi.org/10.1271/bbb.56.689
- Shuai Y, Zhang T, Jiang B, Mu W. 2010. Development of efficient enzymatic production of theanine by gamma-glutamyltranspeptidase from a newly isolated strain of Bacillus subtilis, SK11.004. J. Sci. Food Agric. 90: 2563-2567. https://doi.org/10.1002/jsfa.4120
- Tachiki T, Yamada T, Mizuno K, Ueda M, Shiode J, Fukami H. 1998. gamma-glutamyl transfer reactions by glutaminase from Pseudomonas nitroreducens IFO 12694 and their application for the syntheses of theanine and gamma-glutamylmethylamide. Biosci. Biotechnol. Biochem. 62: 1279-1283. https://doi.org/10.1271/bbb.62.1279
- Mu W, Zhang T, Jiang B. 2015. An overview of biological production of L-theanine. Biotechnol. Adv. 33: 335-342. https://doi.org/10.1016/j.biotechadv.2015.04.004
-
Chen X, Su L, Wu D, Wu J. 2014. Application of recombinant Bacillus subtilis
$\gamma$ -glutamyltranspeptidase to the production of ltheanine. Process Biochem. 49: 1429-1439. https://doi.org/10.1016/j.procbio.2014.05.019 - Pu H, Wang Q, Zhu F, Cao X, Xin Y, Luo L, et al. 2013. Cloning, expression of glutaminase from Pseudomonas nitroreducens and application to theanine synthesis. Biocatal. Biotransform. 31: 1-7. https://doi.org/10.3109/10242422.2012.749462
- Sharma E, Joshi R, Gulati A. 2018. l-Theanine: An astounding sui generis integrant in tea. Food Chem. 242: 601-610. https://doi.org/10.1016/j.foodchem.2017.09.046
-
Liu S, Li Y, Zhu J. 2016. Enzymatic production of l-theanine by
$\gamma$ -glutamylmethylamide synthetase coupling with an ATP regeneration system based on polyphosphate kinase. Process Biochem. 51: 1458-1463. https://doi.org/10.1016/j.procbio.2016.06.006 - Berke W, Schuz HJ, Wandrey C, Morr M, Denda G, Kula MR. 1988. Continuous regeneration of ATP in enzyme membrane reactor for enzymatic syntheses. Biotechnol. Bioeng. 32: 130-139. https://doi.org/10.1002/bit.260320203
- Endo T, Koizumi S. 2001. Microbial conversion with cofactor regeneration using genetically engineered bacteria. Adv. Synth. Catal. 343: 521-526. https://doi.org/10.1002/1615-4169(200108)343:6/7<521::AID-ADSC521>3.0.CO;2-5
- Moon Y-M, Yang SY, Choi TR, Jung H-R, Song H-S, hoon Han Y, et al. 2019. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5'-phosphate and ATP. Enzyme Microb. Technol. 127: 58-64. https://doi.org/10.1016/j.enzmictec.2019.04.010
- Wei LL, Goux WJ. 1992. ATP cofactor regeneration via the glycolytic pathway. Bioorg. Chem. 20: 62-66. https://doi.org/10.1016/0045-2068(92)90026-y
- Sato M, Masuda Y, Kirimura K, Kino K. 2007. Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for D-amino acid dipeptide synthesis. J. Biosci. Bioeng. 103: 179-184. https://doi.org/10.1263/jbb.103.179
- Kameda A, Shiba T, Kawazoe Y, Satoh Y, Ihara Y, Munekata M, et al. 2001. A novel ATP regeneration system using polyphosphate-AMP phosphotransferase and polyphosphate kinase. J. Biosci. Bioeng. 91: 557-563. https://doi.org/10.1016/S1389-1723(01)80173-0
- Yan B, Ding Q, Ou L, Zou Z. 2014. Production of glucose-6-phosphate by glucokinase coupled with an ATP regeneration system. World J. Microbiol. Biotechnol. 30: 1123-1128. https://doi.org/10.1007/s11274-013-1534-7
- Resnick SM, Zehnder AJ. 2000. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate: AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A. Appl. Environ. Microbiol. 66: 2045-2051. https://doi.org/10.1128/AEM.66.5.2045-2051.2000
- Wakisaka S, Ohshima Y, Ogawa M, Tochikura T, Tachiki T. 1998. Characteristics and efficiency of glutamine production by coupling of a bacterial glutamine synthetase reaction with the alcoholic fermentation system of baker's yeast. Appl. Environ. Microbiol. 64: 2952-2957. https://doi.org/10.1128/aem.64.8.2952-2957.1998
- Horinouchi N, Sakai T, Kawano T, Matsumoto S, Sasaki M, Hibi M, et al. 2012. Construction of microbial platform for an energyrequiring bioprocess: practical 2'-deoxyribonucleoside production involving a C- C coupling reaction with high energy substrates. Microb. Cell Fact. 11: 82. https://doi.org/10.1186/1475-2859-11-82
- Matsuno R, Asada M, Nakanishi K, Kamikubo T. 1982. ATP Regeneration by Enzymes of Alcohol Fermentation and Kinases of Yeast and its Computer Simulation, pp. 351-352. Enzyme Engineering, Ed. Springer
- Horinouchi N, Ogawa J, Kawano T, Sakai T, Saito K, Matsumoto S, et al. 2006. Efficient production of 2-deoxyribose 5-phosphate from glucose and acetaldehyde by coupling of the alcoholic fermentation system of Baker's yeast and deoxyriboaldolase-expressing Escherichia coli. Biosci. Biotechnol. Biochem. 70: 1371-1378. https://doi.org/10.1271/bbb.50648
- Yamamoto S, Wakayama M, Tachiki T. 2005. Theanine production by coupled fermentation with energy transfer employing Pseudomonas taetrolens Y-30 glutamine synthetase and baker's yeast cells. Biosci. Biotechnol. Biochem. 69: 784-789. https://doi.org/10.1271/bbb.69.784
- Lin J-P, Tian J, You J-F, Jin Z-H, Xu Z-N, Cen P-L. 2004. An effective strategy for the co-production of S-adenosyl-L-methionine and glutathione by fed-batch fermentation. Biochem. Eng. J. 21: 19-25. https://doi.org/10.1016/j.bej.2004.04.013
- Bhatia SK, Bhatia RK, Yang Y-H. 2016. Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Rev. Environ. Sci. Bio/Technol. 15: 639-663. https://doi.org/10.1007/s11157-016-9415-9
-
Yang S-Y, Choi T-R, Jung H-R, Park Y-L, Han Y-H, Song H-S, et al. 2020. Development of glutaric acid production consortium system with
$\alpha$ -ketoglutaric acid regeneration by glutamate oxidase in Escherichia coli. Enzyme Microb. Technol. 133: 109446. https://doi.org/10.1016/j.enzmictec.2019.109446 - Moon Y-M, Gurav R, Kim J, Hong Y-G, Bhatia SK, Jung H-R, et al. 2018. Whole-cell immobilization of engineered Escherichia coli JY001 with barium-alginate for itaconic acid production. Biotechnol. Bioprocess Eng. 23: 442-447. https://doi.org/10.1007/s12257-018-0170-3
- Bhatia SK, Shim Y-H, Jeon J-M, Brigham CJ, Kim Y-H, Kim H-J, et al. 2015. Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosys. Eng. 38: 1479-1484. https://doi.org/10.1007/s00449-015-1390-y
- Bhatia SK, Kim S-H, Yoon J-J, Yang Y-H. 2017. Current status and strategies for second generation biofuel production using microbial systems. Energy Convers. Manage 148: 1142-1156. https://doi.org/10.1016/j.enconman.2017.06.073
- Alaiz M, Navarro JL, Giron J, Vioque E. 1992. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J. Chromatogr. 591: 181-186. https://doi.org/10.1016/0021-9673(92)80236-N
- Kim J, Seo H-M, Bhatia SK, Song H-S, Kim J-H, Jeon J-M, et al. 2017. Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci. Rep. 7: 39768. https://doi.org/10.1038/srep39768
-
Griffiths MW, Muir DD. 1978. Properties of a thermostable
$\beta$ -galactosidase from a thermophilic Bacillus: Comparison of the enzyme activity of whole cells, purified enzyme and immobilised whole cells. J. Sci. Food Agric. 29: 753-761. https://doi.org/10.1002/jsfa.2740290904 - Buchachenko AL, Kuznetsov DA. 2008. Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc. 130: 12868-12869. https://doi.org/10.1021/ja804819k
- Moon Y-M, Yang SY, Choi TR, Jung H-R, Song H-S, hoon Han Y, et al. 2019. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5'-phosphate and ATP. Enzyme Microb. Technol. 127: 58-64. https://doi.org/10.1016/j.enzmictec.2019.04.010
- Taylor RG, Walker DC, McInnes R. 1993. E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res. 21: 1677. https://doi.org/10.1093/nar/21.7.1677
- Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. 2012. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Fact. 11: 753. https://doi.org/10.1186/1475-2859-11-56
- Lee SG, Lee JO, Yi JK, Kim BG. 2002. Production of cytidine 5'-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst. Biotechnol. Bioeng. 80: 516-524. https://doi.org/10.1002/bit.10398
- Jakoby M, Ngouoto-Nkili C-E, Burkovski A. 1999. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol. Tech. 13: 437-441. https://doi.org/10.1023/A:1008968419217
Cited by
- Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids vol.8, 2020, https://doi.org/10.3389/fbioe.2020.00887
- New advances in genetic engineering for L-theanine biosynthesis vol.114, 2021, https://doi.org/10.1016/j.tifs.2021.06.006
- Metabolic Engineering of Pseudomonas putida for Fermentative Production of L-Theanine vol.69, pp.34, 2020, https://doi.org/10.1021/acs.jafc.1c03240