References
- Kloepper JW, Leong J, Teintze M, Schroth MN. 1980. Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
- Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
- Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339. https://doi.org/10.1007/s10658-007-9162-4
- Velkov T, Thompson PE, Nation RL, Li J. 2010. Structure - activity relationships of polymyxin antibiotics. J. Med. Chem. 53: 1898-1916. https://doi.org/10.1021/jm900999h
- Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS, et al. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77: 1548-1555. https://doi.org/10.1128/AEM.01867-10
- Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, et al. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. Appl. Microbiol. 103: 2331-2339. https://doi.org/10.1111/j.1365-2672.2007.03501.x
- Wang J, Liu J, Chen H, Yao J. 2007. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76: 889-894. https://doi.org/10.1007/s00253-007-1054-1
- Romero D, Perez-Garcia A, Rivera ME, Cazorla FM, de Vicente A. 2004. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl. Microbiol. Biotechnol. 64: 263-269. https://doi.org/10.1007/s00253-003-1439-8
- Borriss R, Chen XH, Rueckert C, Blom J, Becker A, Baumgarth B, et al. 2011. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61: 1786-1801. https://doi.org/10.1099/ijs.0.023267-0
- Perez-Garcia A, Romero D, de Vicente A. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22: 187-193. https://doi.org/10.1016/j.copbio.2010.12.003
- Wang LT, Lee FL, Tai CJ, Kuo HP. 2008. Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58: 671-675. https://doi.org/10.1099/ijs.0.65191-0
- Dunlap CA, Kim SJ, Kwon SW, Rooney AP. 2015. Phylogenomic analysis shows that Bacillus amyloliquefaciens subsp. plantarum is a later heterotypic synonym of Bacillus methylotrophicus. Int. J. Syst. Evol. Microbiol. 65: 2104-2109. https://doi.org/10.1099/ijs.0.000226
- Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. 2010. Bacillus methylotrophicus sp. nov, a methanol-utilizing, plant-growthpromoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60: 2490-2495. https://doi.org/10.1099/ijs.0.015487-0
- Chowdhury SP, Dietel K, Randler M, Schmid M, Junge H, Borriss R. et al. 2013. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One 8: e68818. https://doi.org/10.1371/journal.pone.0068818
- Chowdhury SP, Hartmann A, Gao X, Borriss R. 2015. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42-a review. Front. Microbiol. 6: 780.
- Rong LP, Lei JJ, Wang C. 2011. Collection and evaluation of the genus Lilium resources in Northeast China. Genet. Resour. Crop Evol. 58: 115-123. https://doi.org/10.1007/s10722-010-9584-2
- Chau CF, Wu SH. 2006. The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends Food Sci. Technol. 17: 313-323. https://doi.org/10.1016/j.tifs.2005.12.005
- You X, Xie C, Liu K, Gu Z. 2010. Isolation of non-starch polysaccharides from bulb of tiger lily (Lilium lancifolium Thunb) with fermentation of Saccharomyces cerevisiae. Carbohydr. Polym. 81: 35-40. https://doi.org/10.1016/j.carbpol.2010.01.051
- Schulz B, Boyle C, Draeger S, Rommert AK, Krohn K. 2002. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106: 996-1004. https://doi.org/10.1017/S0953756202006342
- Tan RX, Zou WX. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459. https://doi.org/10.1039/b100918o
- Strobel GA, Sears J, Kramer R, Sidhu RS, Hess WM. 1996. Taxol from Pestalotiopsis microspora an endophytic fungus of Taxus wallachiana. Microbiology 142: 435-440. https://doi.org/10.1099/13500872-142-2-435
- Vincent JM, Humphrey B. 1970. Taxonomically significant group antigens in Rhizobium. J. Gen. Microbiol. 63: 379-382. https://doi.org/10.1099/00221287-63-3-379
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
- Khamna S, Yokota A, Lumyong S. 2009. Actinomycetes isolated from medicinal plant rhizospheric soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol. 25: 649-655. https://doi.org/10.1007/s11274-008-9933-x
- Lee S, Oh DG, Lee S, Kim G, Lee J, Son Y, et al. 2015. Chemotaxonomic metabolite profiling of 62 indigenous plant species and its correlation with bioactivities. Molecules 20: 19719-19734. https://doi.org/10.3390/molecules201119652
- Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. 2016. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34: 828-837. https://doi.org/10.1038/nbt.3597
- Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30: 918-920. https://doi.org/10.1038/nbt.2377
- Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, et al. 2005. Cadmium-tolerant plant growthpromoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil. Biol. Biochem. 37: 241-250. https://doi.org/10.1016/j.soilbio.2004.07.033
- Truyens S, Jambon I, Croes S, Janssen J, Weyens N, Mench M, et al. 2014. The effect of long-term cd and ni exposure on seed endophytes of Agrostis capillaris and their potential application in phytoremediation of metal-contaminated soils. Int. J. Phytorem. 16: 643-659. https://doi.org/10.1080/15226514.2013.837027
- Cunningham JE, Kuiack C. 1992. Production of citric and oxalic acids and solubilization of calcium-phosphate by Penicillium bilaii. Appl. Environ. Microbiol. 58: 1451-1458. https://doi.org/10.1128/aem.58.5.1451-1458.1992
- Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant. Physiol. 26: 192-195. https://doi.org/10.1104/pp.26.1.192
- Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Doebereiner J. 1994. Isolation and identification of aerobic nitrogen fixing bacteria. In: Alef K, Nannipieri P, pp. 134-141 (eds.), Methods in Applied Soil Microbiology and Biochemistry. Cambridge, MA, USA, Academic.
- Bashan Y, Holguin G, Lifshitz R. 1993. Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE, pp. 331-345 (eds.), Methods in Plant Molecular Biology and Biotechnology. BocaRaton, FL, USA, CRC Press.
- Mehta S, Nautiyal CS. 2001. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43: 51-56. https://doi.org/10.1007/s002840010259
- Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007-1014. https://doi.org/10.1038/nbt1325
- Rabbee MF, Ali MD, Choi J, Hwang BS, Jeong SC, Baek KH. 2019. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 24: 1046. https://doi.org/10.3390/molecules24061046
-
Yao A, Dr HB, Karimov S, Boturov U, Sanginboy S, Sharipov AK. 2006. Effect of FZB
$24^{(R)}$ Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch. Phytopathol. Plant. Protect. 39: 323-328. https://doi.org/10.1080/03235400600655347 - Cai XC, Liua CH, Wang BT, Xuea YR. 2016. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Microbiol. Res. 196: 89-94. https://doi.org/10.1016/j.micres.2016.12.007
- Zhang Y, Gao X, Wang S, Zhu C, Li R, Shen Q. 2018. Application of Bacillus velezensis NJAU-Z9 enhanced plant growth associated with efficient rhizospheric colonization monitored by qpcr with primers designed from the whole genome sequence. Curr. Microbiol. 75: 1574-1583. https://doi.org/10.1007/s00284-018-1563-4
- Horst RK. 2013. Field manual of diseases on fruits and vegetables. Springer Science+Business Media Dordrecht.
- Syed-Ab-Rahman SF, Carvalhais LC, Chua E, Xiao Y, Wass TJ, Schenk PM. 2018. Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Front. Plant. Sci. 9: 1502. https://doi.org/10.3389/fpls.2018.01502
- Martinez-Luis S, Ballesteros J, Gutierrez M. 2011. Antibacterial constituents from the octocoral-associated bacterium Pseudoalteromonas sp. Revista Latinoamericana Quimica. 39: 75-83.
- Nishanth Kumar S, Mohandas C, Siji J, Rajasekharan K, Nambisan B. 2012. Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi. J. Appl. Microbiol. 113: 914-924. https://doi.org/10.1111/j.1365-2672.2012.05385.x
- Yang E, Chang H. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int. J. Food. Microbiol. 139: 56-63. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012
- Wang XM, Bai YJ, Cai YJ, Zheng XH. 2017. Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process. Biochem. 53: 109-115. https://doi.org/10.1016/j.procbio.2016.12.012
- Gill K, Kumar S, Xess I, Dey S. 2015. Novel synthetic anti-fungal tripeptide effective against Candida krusei. Ind. J. Med. Microbiol. 33: 110-116. https://doi.org/10.4103/0255-0857.148404
- Kloepper JW, Leong J, Teintze M, Schroth MN. 1980. Enhancing plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. https://doi.org/10.1038/286885a0
- Rao MRK, Philip S, Kumar MH, Saranya Y, Divya D, Prabhu K. 2015. GC-MS analysis, antimicrobial, antioxidant activity of an Ayurvedic medicine, Salmali Niryasa. J. Chem. Pharma. Res. 7: 131-139.
- Ismail NH, Ali AM, Aimi N, Kitajima M, Takayama H, Lajis NH. 1997. Anthraquinones from Morinda elliptica. Phytochemistry 45: 1723-1725. https://doi.org/10.1016/S0031-9422(97)00252-5
- Ali AM, Ismail NH, Mackeen MM, Yazan LS, Mohamed SM, Ho ASH, et al. 2000. Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharma. Biol. 38: 298-301. https://doi.org/10.1076/1388-0209(200009)3841-AFT298
- Marioni J, da Silva MA, Cabreraa JL, Nunez Montoyaa SC, Paraje MG. 2016. The anthraquinones rubiadin and its 1-methyl ether isolated from Heterophyllaea pustulata reduces Candida tropicalis biofilms formation. Phytomedicine 23: 1321-1328. https://doi.org/10.1016/j.phymed.2016.07.008
- Matoba AY. 2012. Fungal keratitis responsive to Moxifloxacin monotherapy. Cornea 31: 1206-1209. https://doi.org/10.1097/ICO.0b013e31823f766c
- Lopes R, Tsui S, Goncalves PJRO, de Queirozm MV. 2018. A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World. J. Microbiol. Biotechnol. 34: 94. https://doi.org/10.1007/s11274-018-2479-7
- de Werra P, Pechy-Tarr M, Keel C, Maurhofer M. 2009. Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75: 4162-4174. https://doi.org/10.1128/AEM.00295-09
- Todorovic B, Glick BR. 2008. The interconversion of ACC deaminase and D-cysteine desulfhydrase by directed mutagenesis. Planta 229: 193-205. https://doi.org/10.1007/s00425-008-0820-3
- Abeles FB, Morgan PW, Saltveit Jr ME. 1992. Ethylene in plant biology, pp. 1-13. 2nd edn. San Diego, Academic Press.
- Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, et al. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ. Pollut. 147: 540-545. https://doi.org/10.1016/j.envpol.2006.10.014
- Meng Q, Jiang H, Hao JJ. 2016. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol. Cont. 98: 18-26. https://doi.org/10.1016/j.biocontrol.2016.03.010
- Xu M, Sheng J, Chen L, Men Y, Gan L, Guo S, et al. 2014. Bacterial community compositions of tomato (Lycopersicum esculentum Mill.) seeds and plant growth promoting activity of ACC deaminase producing Bacillus subtilis (HYT-12-1) on tomato seedlings. World. J. Microbiol. Biotechnol. 30: 835-845. https://doi.org/10.1007/s11274-013-1486-y
- Patten CL, Blakney AJC, Coulson TJD. 2013. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 39: 395-415. https://doi.org/10.3109/1040841X.2012.716819
- Idris EE, Iglesias DJ, Talon M, Borriss R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant. Microbe. Interact. 20: 619-626 https://doi.org/10.1094/MPMI-20-6-0619
- Chagas Junior Af, De Oliveira AG, De Oliveira LA, Dos Santos Gr, Chagas LFB, Lopes da Silva AL, Luz Costa J. 2015. Production of indole-3-acetic acid by bacillus isolated from different soils. Bulg. J. Agric. Sci. 21: 282-287.
- Raza W, Shen Q. 2010. Growth, Fe3 + reductase activity, and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions. Curr. Microbiol. 61: 390-5. https://doi.org/10.1007/s00284-010-9624-3
- Kesaulya H, Hasinu JV, Tuhumury GNC. 2018. Potential of Bacillus spp produces siderophores in suppressing the wilt disease of banana plants. IOP Conference Series: Earth Environ. Sci. 102(1): 012016. https://doi.org/10.1088/1755-1315/102/1/012016
- Ferreira CMH, Vilas-Boas A, Sousa CA, Soares HMVM, Soares EV. 2019. Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express 9: 78. https://doi.org/10.1186/s13568-019-0796-3
- Tailor AJ, Joshi BH. 2012. Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. J. Environ. Res. Dev. 6: 688-694.
- Kumar VS, Menon S, Agarwal H, Gopalakrishnan D. 2017. Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resource-Efficient Technol. 3: 434-439. https://doi.org/10.1016/j.reffit.2017.04.004
- Zhao L, Xu Y, Sun R, Deng Z, Yang W, Wei G. 2011. Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain mq23 isolated from Sophora alopecuroides root nodules. Braz. J. Microbiol. 42: 567-575. https://doi.org/10.1590/S1517-83822011000200022
- Shen FT, Yen JH, Liao CS, Chen WC, Chao YT. 2019. Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 11: 1133. https://doi.org/10.3390/su11041133
- Borriss R. 2011. "Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents," in Bacteria in Agrobiology. In: Maheshwari DK, pp. 41-76 (ed.), Plant Growth Responses. Heidelberg, Springer.
- Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F. 2013. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 58: 435-455. https://doi.org/10.1007/s10526-012-9479-6
- Bach E, Dos Santos Seger GD, De Carvalho Fernandes G, Lisboa BB, Passaglia LMP. 2016. Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl. Soil. Ecol. 99: 141-149. https://doi.org/10.1016/j.apsoil.2015.11.002
- van Lenteren JC, Bolckmans K, Kohl J, Ravensberg WJ, Urbaneja A. 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63: 39-59. https://doi.org/10.1007/s10526-017-9801-4
- Fan B, Wang C, Song X, Ding X, Wu L, Wu H, et al. 2018. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491. https://doi.org/10.3389/fmicb.2018.02491
Cited by
- Chemistry, Biosynthesis, Physicochemical and Biological Properties of Rubiadin: A Promising Natural Anthraquinone for New Drug Discovery and Development vol.15, 2021, https://doi.org/10.2147/dddt.s338548
- Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues vol.16, pp.1, 2020, https://doi.org/10.1038/s41396-021-01060-3
- Use of Bacillus velezensis SDTB022 against tobacco black shank (TBS) and the biochemical mechanism involved vol.165, 2020, https://doi.org/10.1016/j.biocontrol.2021.104785