References
- Siegel RL, Miller KD, Jemal A. 2017. Cancer Statistics, 2017. CA Cancer J. Clin. 67: 7-30. https://doi.org/10.3322/caac.21387
- Sharma SV, Bell DW, Settleman J, Haber DA. 2007. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7: 169-181. https://doi.org/10.1038/nrc2088
- Herbst RS, Morgensztern D, Boshoff C. 2018. The biology and management of non-small cell lung cancer. Nature 553: 446-454. https://doi.org/10.1038/nature25183
- Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New Engl. J. Med. 350: 2129-2139. https://doi.org/10.1056/NEJMoa040938
- Tokudome N, Koh Y, Akamatsu H, Fujimoto D, Okamoto I, Nakagawa K, et al. 2020. Differential significance of molecular subtypes which were classified into EGFR exon 19 deletion on the first line afatinib monotherapy. BMC Cancer 20: 103. https://doi.org/10.1186/s12885-020-6593-1
- Mitsudomi T, Yatabe Y. 2010. Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J. 277: 301-308. https://doi.org/10.1111/j.1742-4658.2009.07448.x
- Schwarzenbach H, Hoon DSB, Pantel K. 2011. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 11: 426-437. https://doi.org/10.1038/nrc3066
- Zhang Y, Shen WX, Zhou LN, Tang M, Tan Y, Feng CX, et al. 2020. The value of next-generation sequencing for treatment in nonsmall cell lung cancer patients: The observational, real-world evidence in China. Biomed. Res. Int. 2020: 9387167.
- Yatabe Y, Hida T, Horio Y, Kosaka T, Takahashi T, Mitsudomi T. 2006. A rapid, sensitive assay to detect EGFR mutation in small biopsy specimens from lung cancer. J. Mol. Diagn. 8: 335-341. https://doi.org/10.2353/jmoldx.2006.050104
- Ren XD, Liu DY, Guo HQ, Wang L, Zhao N, Su N, et al. 2019. Sensitive detection of low-abundance in-frame deletions in EGFR exon 19 using novel wild-type blockers in real-time PCR. Sci. Rep. 9: 8276. https://doi.org/10.1038/s41598-019-44792-1
- Bae JH, Jo SM, Kim HS. 2015. Comprehensive detection of diverse exon 19 deletion mutations of EGFR in lung cancer by a single probe set. Biosens. Bioelectron. 74: 849-855. https://doi.org/10.1016/j.bios.2015.07.043
- Weber B, Meldgaard P, Hager H, Wu L, Wei W, Tsai J, et al. 2014. Detection of EGFR mutations in plasma and biopsies from nonsmall cell lung cancer patients by allele-specific PCR assays. BMC Cancer 14: 294. https://doi.org/10.1186/1471-2407-14-294
- Kim DM, Kim DH, Jung W, Lee KY, Kim DE. 2018. Fluorometric detection of EGFR exon 19 deletion mutation in lung cancer cells using graphene oxide. Analyst 143: 1797-1804. https://doi.org/10.1039/c8an00098k
- Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M. 1989. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J. Biol. Chem. 264: 8935-8940. https://doi.org/10.1016/S0021-9258(18)81883-X
- Goo NI, Kim DE. 2016. Rolling circle amplification as isothermal gene amplification in molecular diagnostics. Biochip J. 10: 262-271. https://doi.org/10.1007/s13206-016-0402-6
- Kim DM, Seo J, Jun BH, Kim DH, Jeong W, Hwang SH, et al. 2017. Fluorometric detection of influenza virus RNA by PCR-coupled rolling circle amplification generating G-quadruplex. Sensor. Actuat. B-Chem. 251: 894-901. https://doi.org/10.1016/j.snb.2017.05.101
- Fujita H, Kataoka Y, Tobita S, Kuwahara M, Sugimoto N. 2016. Novel One-Tube-One-Step real-time methodology for rapid transcriptomic biomarker detection: signal amplification by ternary initiation complexes. Anal. Chem. 88: 7137-7144. https://doi.org/10.1021/acs.analchem.6b01192
- Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar PI, Bhasikuttan AC. 2013. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric g-quadruplex DNA. J. Am. Chem. Soc. 135: 367-376. https://doi.org/10.1021/ja309588h