DOI QR코드

DOI QR Code

The Effect of Communication Media Richness on Continuous Intention to Use: The Moderating Effect of User Experience

커뮤니케이션 매체의 풍부성이 지속적인 사용 의도에 미치는 영향 - 이용경험의 조절효과

  • Choi, Ju-Choel (Department for Future Innovation, Kyung Hee University) ;
  • Kim, Te-Gyun (Department for Extension, Kyung Hee University)
  • Received : 2020.03.31
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

Although multimedia messaging services (MMS) are becoming increasingly popular, and companies are maximizing the use of their content, few systematic studies on MMSs exist. This study examined technology acceptance factors for MMS in 398 young people aged 10 to 39 to identify MMS users' continuous intention to use (CITU) via a questionnaire and SPSS21 and PLS-Graph 3.0. The results showed that perceived media richness (PMR) had a positive effect on perceived usefulness, perceived ease of use, and most importantly, CITU. Furthermore, PMR had a positive effect on perceived ease of use as a moderating effect on experience. To increase use efficiency in MMSs based on these results, media richness, perceived ease of use, perceived usefulness, and user experience may serve as important variables affecting users' CITU and provide a basic reference and development direction for MMS users. Future studies should include more variables and examine additional factors when analyzing the structural model.

최근 모바일 메신저 서비스(MMS)는 사용자들에게 가장 인기가 많으며 많이 활용하는 서비스로 기업은 이를 활성화시키기 위해 노력하고 있지만 이에 대한 구체적이고 체계적인 연구는 미흡하다. 이에 본 연구는 MMS 사용자들의 지속적인 이용 의도를 알아보기 위해 398명의 10대~30대를 대상으로 MMS의 기술수용 결정 요인을 살펴보았다. 연구조사는 설문지와 SPSS 21 및 PLS-Graph 3.0을 이용하여 연구모형의 주요 결과를 도출하였다. 분석 결과 지각된 매체 풍부성은 매체 유용성과 매체 용이성에 정(+)의 영향을 주었으며, 지속적인 사용의도에 긍정적인(+) 영향을 미쳤다. 또한, 경험에 대한 조절 효과로 지각된 매체 풍부성은 매체 용이성에 정(+)의 영향을 주는 것으로 나타났다. 이러한 결과를 바탕으로 MMS의 이용 효율성을 높이기 위해 매체 풍부성, 매체 용이성, 매체 유용성 및 사용자 경험이 사용자의 지속적인 의도에 미치는 중요 변수로 MMS의 사용자 기초자료와 개발 방향을 제공할 수 있을 것이다. 향후 연구에서는 보다 다양한 변수를 활용하여 추가요인에 대한 조사와 구조모형에 대한 분석이 필요하다고 본다.

Keywords

References

  1. S. Y. Yang & Y. S. Park. (2005). A prediction model of cellular phone tendency among adolescents. The Korean Home Economics Association, 43(4), 1-16.
  2. G. Jiang & W. Deng. (2011). An empirical analysis of factors influencing the adoption of mobile instant messaging in china. International Journal of Mobile Communications, 9(6), 563-584. DOI : 10.1504/ijmc.2011.042777
  3. B. K. Lee & B. S. Kim. (2012). A study on customers' impulsive buying in social commerce environment: the role of flow and emotion. The Korean Journal of Information Systems, 21(3), 117-136. DOI : 10.5859/kais.2012.21.3.117
  4. F. D. Davis. (1989). Perceived usefulness, perceived ease of use, and user acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. DOI : 10.2307/249008
  5. I. Ajzen & M. Fishbein. (1980). Understanding attitudes and predicting social behaviour. NewJersey: Prentice-Hall.
  6. H. P. Shih. (2004). Extended technology acceptance model of Internet utilization behavior. Information & Management, 41(6), 719-729. DOI : 10.1016/j.im.2003.08.009
  7. L. Y. Zhu & J. K. Park. (2018). A Effects of Travel Agents' Application Quality on the Intention to Reuse: Applying a Technical Acceptance Model. Journal of Tourism Management Research, 22(1), 259-279. DOI : 10.18604/tmro.2018.22.1.12
  8. K. M. Kim & N. J. Kim. (2019). Analysis of food consumers of usage attitude and usage intention towards technology-based self-service(TBSS) : Focused on TRAM(integrated technology readiness and acceptance model). Journal of Tourism and Leisure Research, 31(3), 237-257. DOI : 10.31336/JTLR.2019.3.31.3.237
  9. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3). 425-478. DOI : 10.2307/30036540
  10. P. Legris, J. Ingham & P. Collerette. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. DOI : 10.1016/s0378-7206(01)00143-4
  11. Y. H. Kim. (2003). Social network analysis. Seoul : Pakyoungsa.
  12. R. Scherer, F. Siddiq & J. Tondeur. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers' adoption of digital technology in education. Computers & Education, 128, 13-35. DOI : 10.1016/j.compedu.2018.09.009
  13. J. Y. Jeong & T. W. Roh. (2017). The Intention of Using Wearable Devices: Based on Modified Technology Acceptance Model. Journal of Digital Convergence, 15(4), 205-212. https://doi.org/10.14400/JDC.2017.15.4.205
  14. Q. Q. Chen & H. J. Park. (2018). Consumer Study on the Acceptance of VR Headsets based on the Extended TAM. Journal of Digital Convergence, 16(6), 117-126. https://doi.org/10.14400/JDC.2018.16.6.117
  15. H. D. Moon & J. W. Kim. (2009). A Study on the TAM (Technology Acceptance Model) in Involuntary IT Usage Environment. Journal of Digital Convergence, 7(3), 13-24.
  16. R. L. Daft & R. H. Lengel. (1986). Organizational Information Requirement, Media richness and structural design. Management Science, 32(5), 554-571. DOI : 10.1287/mnsc.32.5.554
  17. S. J. Choi, K. J. Kang & I. S. Ko. (2007). The impacts of media richness, media usefulness, and media experience on the leaner's satisfaction with e-learning systems. Journal of Information Technology Applications & Management, 14(2), 27-47.
  18. D. Adam, R. Nelson & P. Todd. (1992). Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication. MIS Quarterly, 16(2), 227-248. DOI : 10.2307/249577
  19. S. H. Oh & S. H. Kim. (2006). Structural Relationships among Factors Affecting Usage of Internet Banking: Focusing on extended technology acceptance model. Korean Journal of Marketing, 21(1), 1-27.
  20. W. H. DeLone & E. R. McLean. (1992). Information Systems Success : The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-95. DOI : 10.1287/isre.3.1.60
  21. P. B. Seddon. (1997). A Respecification and Extension of the DeLone and McLean Model of IS Success. Information Systems Research, 8(3), 240-253. DOI : 10.1287/isre.8.3.240
  22. K. O. Matthew, C. Lee, M. K. Cheung & Z. H. Chen. (2007). Understanding user acceptance of multimedia messaging services: An empirical study. Journal of the American Society for Information Science and Technology, 58(13), 2066-2077. DOI : 10.1002/asi.20670
  23. J. Fulk & D. Ryu. (1990). Perceiving Electronic Mail Systems : A Partial Test of the Social Information Processing Model. Paper presented to a meeting of the International Communication Association, Dublin.
  24. E. Karahanna & Limayem. (2000). E-Mail and V-Mail Usage: Generalizing Across Technologies. Journal of Organizational Computing and Electronic Commerce. 10(1), 49-66. DOI : 10.1207/s15327744joce100103
  25. F. D. Davis, R. D. Bagozzi & P. R. Warshaw. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. MIS Journal of Applied Social Psychology, 22(14), 1111-1132. https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
  26. M. Igbaria, T. Guimaraes & G. Davis. (1995). Testing the determinants of microcomputer usage via a structural equation model. Journal of Management Information Systems, 11(4), 87-114. DOI : 10.1080/07421222.1995.11518061
  27. J. R. Carlson & R. W. Zmud. (1999). Channel Expansion Theory and the Experiential Nature of Media Richness Perceptions. Academy of Management Journal, 42(2), 153-170. DOI : 10.2307/257090
  28. V. Venkatesh & F. D. Davis. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. DOI : 10.1287/mnsc.46.2.186.11926
  29. K. Mathieson. (1991). Predicting user intention: comparing the technology acceptance model with theory of planned behavior. Information Systems Research, 2(3), 173-191. DOI : 10.1287/isre.2.3.173
  30. A. Bhattacjerjee. (2001). Understanding information systems continuance: An expectation - confirmation model. MIS Quarterly, 25(3), 351-370. DOI : 10.2307/3250921
  31. W. W. Chin & P. A. Todd. (1995). On the Use, Usefulness, and Ease of Use of Structural Equation Modeling in MIS Research: A Note of Caution. MIS Quarterly, 19(2), 237-246. DOI : 10.2307/249690
  32. J. C. Nunnally. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw-Hill.
  33. R. P. Bagozzi & Y. Yi. (1998). On the Evaluation of Structural Equation Models. Journal of Academy of Marketing Science, 16(1), 74-94. https://doi.org/10.1007/BF02723327
  34. J. C. Anderson & D. W. Gerbing. (1998). Structural equation modeling in practice: A review and recommended two-step approach. Psychology Bulletin, 103(3), 411-423. DOI : 10.1037/0033-2909.103.3.411
  35. C. Fornell & D. F. Larcker. (1981). Evaluating Structure Equation Models with Unobservable variables and Measurement Error. Journal of Marketing Science, 18(1), 39-50. DOI : 10.2307/3151335
  36. M. Igbaria, N. Zinatelli, P. Cragg & A. L. M. Cavaye. (1997). Personal computing acceptance factors in small firms: a structural equation model. MIS Quarterly, 21(30), 279-305. DOI : 10.2307/249498
  37. M. K. Ahuja & J. B. Thatcher. (2005). Moving Be-yond Intentions and Toward the Theory of Trying: Effects of Work Environment and Gender on Post-Adoption Information Technology Use. MIS Quarterly, 29(3), 427-459. DOI : 10.2307/25148691