DOI QR코드

DOI QR Code

Design of QCA Content-Addressable Memory Cell for Quantum Computer Environment

양자컴퓨터 환경에서의 QCA 기반 내용주소화 메모리 셀 설계

  • 박채성 (금오공과대학교 컴퓨터공학과) ;
  • 전준철 (금오공과대학교 컴퓨터공학과)
  • Received : 2020.02.16
  • Accepted : 2020.03.11
  • Published : 2020.05.31

Abstract

Quantum-dot cellular automata (QCA) is a technology that attracts attention as a next-generation digital circuit design technology, and several digital circuits have been proposed in the QCA environment. Content-addressable memory (CAM) is a storage device that conducts a search based on information stored therein and provides fast speed in a special process such as network switching. Existing CAM cell circuits proposed in the QCA environment have a disadvantage in that a required area and energy dissipation are large. The CAM cell is composed of a memory unit that stores information and a match unit that determines whether or not the search is successful, and this study proposes an improved QCA CAM cell by designing the memory unit in a multi-layer structure. The proposed circuit uses simulation to verify the operation and compares and analyzes with the existing circuit.

양자점 셀룰러 오토마타(QCA: Quantum-dot cellular automata)는 차세대 디지털 회로설계 기술로서 주목받는 기술이며, 여러 디지털 회로들이 QCA 환경에서 제안되고 있다. 내용주소화 메모리(CAM: Content-addressable memory)는 내부에 저장된 정보를 바탕으로 탐색을 진행하는 저장장치이며, 네트워크 스위칭 등 특수한 과정에서 빠른 속도를 제공한다. QCA 환경에서 제안된 기존의 CAM 셀 회로들은 필요 면적과 에너지 손실이 크다는 단점이 있다. CAM 셀은 정보가 저장되는 메모리 부와 탐색의 성공 여부를 판단하는 판단부로 구성되며, 본 연구에서는 메모리 부를 다층구조로 설계하여 개선된 QCA CAM 셀을 제안한다. 제안한 회로는 시뮬레이션을 사용하여 동작을 검증하며 기존 회로와 비교 및 분석한다.

Keywords

References

  1. N. Z. Haron and S. Hamdioui, "Why is CMOS scaling coming to an END?," 2008 3rd International Design and Test Workshop, IEEE, pp. 98-103, Monastir, Tunisia, Dec. 2008. doi.org/10.1109/IDT.2008.4802475
  2. G. H. Cho, “A Study on the Effect of Carbon Nanotube Directional Shrinking Transfer Method for the Performance of CNTFET-based Circuit,” The Journal of the Convergence on Culture Technology, Vol. 4, No. 3, pp. 287-291, Aug. 2018. doi.org/10.17703/JCCT.2018.4.3.287
  3. J. C. Jeon, "Low Complexity QCA Universal Shift Register Design Using Multiplexer and D Flip-Flop Based on Electronic Correlations," The Journal of Supercomputing, Aug. 2019, Online published. doi.org/10.1007/s11227-019-02962-y
  4. A. Chudasama, T.N. Sasamal and J. Yadav, "An efficient design of Vedic multiplier using ripple carry adder in Quantum-dot Cellular Automata," Computers & Electrical Engineering, Vol. 65, pp. 527-542, Jan. 2018. doi.org/10.1016/j.compeleceng.2017.09.019
  5. N. Safoev and J. C. Jeon, "Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology," Microprocessors and Microsystems, Vol. 72, Feb. 2020, Online published. doi.org/10.1016/j.micpro.2019.102927
  6. S. Erniyazov and J. C. Jeon, "Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation", Microelectronic Engineering, Vol. 211, pp. 37-43, Apr. 2019. doi.org/10.1016/j.mee.2019.03.015
  7. N. Safoev and J. C. Jeon, "A Novel Controllable Inverter and Adder/Subtractor in Quantum-Dot Cellular Automata Using Cell Interaction Based XOR Gate," Microelectronic Engineering, Vol. 222, Feb. 2020, Online published. doi.org/10.1016/j.mee.2019.111197
  8. A. Sandhu, and S. GUPTA. "A Majority Gate Based RAM Cell design with Least Feature Size in QCA," Gazi University Journal of Science, Vol. 32, No. 4, pp. 1150-1165, Dec. 2019. doi.org/10.35378/gujs.500724
  9. M. Heydari, Z. Xiaohu, K. K. Lai, and S. Afro, "A Cost-Aware Efficient RAM Structure Based on Quantum-Dot Cellular Automata Nanotechnology," International Journal of Theoretical Physics, Vol. 58 No. 12, pp. 3961-3972, Nov. 2019. doi.org/10.1007/s10773-019-04261-x
  10. M. Abdullah-Al-Shafi, and A. N. Bahar, “A New Structure for Random Access Memory Using Quantum-Dot Cellular Automata,” Sensor Letters, Vol. 17, No. 8, pp. 595-600, Aug. 2019. doi.org/10.1166/sl.2019.4117
  11. M. G. Roshan, and M. Gholami, "4-Bit serial shift register with reset ability and 4-bit LFSR in QCA technology using minimum number of cells and delay" Computers & Electrical Engineering, Vol. 78, pp. 449-462, Sep. 2019. doi.org/10.1016/j.compeleceng.2019.08.002
  12. E. Rahimi, and S. M. Nejad, "A novel architecture for quantum-dot cellular ROM," In 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing, pp. 347-350, newcastle upon tyne, UK, July. 2010. doi.org/10.1109/CSNDSP16145.2010.5580404
  13. L. H. B Sardinha, D. S Silva, M. A. M. Vieira, L. F. M. Vieira, and O. P. V. Neto, "Tcam/cam-qca:(ternary) content addressable memory using quantum-dot cellular automata.", Microelectronics Journal, Vol. 46, No. 7, pp. 563-571, July. 2015. doi.org/10.1016/j.mejo.2015.03.020
  14. S. R. Heikalabad, A. H. Navin, and M. Hosseinzadeh, "Content addressable memory cell in quantum-dot cellular automata," Microelectronic Engineering, Vol. 163, pp. 140-150, Sep. 2016. doi.org/10.1016/j.mee.2016.06.009
  15. C. S. Lent, P. D. Tougaw and W. Porod, “Bistable saturation in coupled quantum dots for quantum cellular automata,” Applied Physics Letters, Vol. 62, No. 7, pp. 714-716, Feb. 1993. doi.org/10.1063/1.108848
  16. Y. W. You and J. C. Jeon, "Design of Falling-Edge Triggered T Flip-Flop based on Quantum-Dot Cellular Automata", International Journal of Engineering & Technology, Vol. 7, No. 4.4, pp. 19-20, Sep. 2018. doi.org/10.14419/ijet.v7i4.4.19599
  17. S. Erniyazov and J. C. Jeon, "Coplanar Subtractor Design in QCA for Arithmetic Circuit Design," Advanced Science Letters, American Scientific Publishers, Vol. 23, No. 10, pp. 10112-10117, Oct. 2017. doi.org/10.1166/asl.2017.10399
  18. K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, "QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata," IEEE transactions on nanotechnology, Vol. 3 No. 1, pp. 26-31, Mar. 2004. doi.org/10.1109/TNANO.2003.820815
  19. C. D Thompson, "Area-time complexity for VLSI," In Proceedings of the eleventh annual ACM symposium on Theory of computing, pp. 81-88, Georgia, USA, Apr. 1997. doi.org/10.1145/800135.804401