DOI QR코드

DOI QR Code

셀 간 상호작용을 이용한 다층구조 QCA D-래치 설계

Multilayer QCA D-latch design using cell interaction

  • 장우영 (금오공과대학교 컴퓨터공학과) ;
  • 전준철 (금오공과대학교 컴퓨터공학과)
  • 투고 : 2020.02.16
  • 심사 : 2020.03.14
  • 발행 : 2020.05.31

초록

디지털 회로설계 기술에서 사용되는 CMOS는 양자 터널링 현상 등으로 인해 집적도의 한계에 다다르고 있다. 이를 대체할 수 있는 양자점 셀룰러 오토마타(QCA : Quantum-dot Cellular Automata)는 적은 전력 소모와 빠른 스위칭 속도 등으로 많은 장점이 있음으로 CMOS의 많은 디지털 회로들이 QCA 기반으로 제안되었다. 그중에서도 멀티플렉서는 D-플립플롭, 레지스터 등 다양한 회로에 쓰이는 기본 회로로써 많은 연구가 되고 있다. 하지만 기존의 멀티플렉서는 공간 효율성이 좋지 않다는 단점이 있다. 따라서, 본 논문에서는 셀 간 상호작용을 이용하여 새로운 다층구조 멀티플렉서를 제안하고, 이를 이용하여 D-래치를 제안한다. 본 논문에서 제안하는 멀티플렉서와 D-래치는 면적, 셀 개수, 지연시간이 개선되었으며, 이를 이용하여 큰 회로를 설계할 시 연결성과 확장성이 우수하다. 제안된 모든 구조는 QCADesigner를 이용해 시뮬레이션하여 동작을 검증한다.

CMOS used in digital circuit design technology has reached the limit of integration due to quantum tunneling. Quantum-dot cellular automata (QCA), which can replace this, has many advantages such as low power consumption and fast switching speed, so many digital circuits of CMOS have been proposed based on QCA. Among them, the multiplexer is a basic circuit used in various circuits such as D-flip-flops and resistors, and has been studied a lot. However, the existing multiplexer has a disadvantage that space efficiency is not good. Therefore, in this paper, we propose a new multilayered multiplexer using cell interaction and D-latch using it. The multiplexer and D-latch proposed in this paper have improved area, cell count, and delay time, and have excellent connectivity and scalability when designing large circuits. All proposed structures are simulated using QCADesigner to verify operation.

키워드

참고문헌

  1. E. E. Hall, "The Penetration of Totally Reflected Light into the Rarer Medium", Phys. Rev. (Series I) Vol. 15, No. 2, pp. 73-106, 1902. doi.org/10.1103/PhysRevSeriesI.15.73
  2. G. H. Cho, “A Study on the Effect of Carbon Nanotube Directional Shrinking Transfer Method for the Performance of CNTFET-based Circuit,” The Journal of the Convergence on Culture Technology, Vol. 4, No. 3, pp. 287-291, Aug. 2018. doi.org/10.17703/JCCT.2018.4.3.287.
  3. C. S. Lent et al., "Bistable saturation in coupled quantum dots for quantum cellular automata", Applied physics letters, Vol. 62, No. 7, pp. 714-716, 1993. doi.org/10.1063/1.108848
  4. J. C. Jeon, "Low-complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations.", The Journal of Supercomputing, pp. 1-15, 2019. doi.org/10.1007/s11227-019-02962-y
  5. S. Erniyazov and J. C. Jeon, "Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation", Microelectronic Engineering, Vol. 211, pp. 37-43, Apr. 2019. doi.org/10.1016/j.mee.2019.03.015
  6. N. Safoev and J. C. Jeon, "A Novel Controllable Inverter and Adder/Subtractor in Quantum-Dot Cellular Automata Using Cell Interaction Based XOR Gate," Microelectronic Engineering, Vol. 222, Feb. 2020, Online published. doi.org/10.1016/j.mee.2019.111197
  7. B. Sen, M. Goswami, S. Mazumdar, and B. K. Sikdar, "Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers.", Computers & Electrical Engineering, Vol. 45, pp. 42-54, 2015. doi.org/10.1016/j.compeleceng.2015.05.001
  8. M. N. Asfestani, and S. R. Heikalabad, "A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures.", Physica B: Condensed Matter, Vol. 512, pp. 91-99, 2017. doi.org/10.1016/j.physb.2017.02.028
  9. A. H. Majeed, E. Alkaldy, M. S. Zainal, K. Navi, and D. Nor, "Optimal design of RAM cell using novel 2: 1 multiplexer in QCA technology.", Circuit World, 2019. doi.org/10.1108/CW-06-2019-0062
  10. M. Mosleh, "A novel design of multiplexer based on nano‐scale quantum‐dot cellular automata.", Concurrency and Computation: Practice and Experience, Vol. 31, No. 13, e5070. 2019. doi.org/10.1002/cpe.5070
  11. N. Safoev and J. C. Jeon, "Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology", Microprocessors and Microsystems, Vol. 72, Feb. 2020, Online published. doi.org/10.1016/j.micpro.2019.102927
  12. B. Sen, M. Goswami, S. Some, and B. K. Sikdar, "Design of sequential circuits in multilayer qca structure.", In 2013 International Symposium on Electronic System Design, IEEE, pp. 21-25, 2013. doi.org/10.1109/ISED.2013.11
  13. J. C. Das, and D. De, "Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design.", Microsystem Technologies, Vol. 23, No. 9, pp. 4155-4168, 2017. doi.org/10.1007/s00542-016-3085-y
  14. M. G. Roshan, and M. Gholami, "4-Bit serial shift register with reset ability and 4-bit LFSR in QCA technology using minimum number of cells and delay.", Computers & Electrical Engineering, Vol. 78, pp. 449-462, 2019. doi.org/10.1016/j.compeleceng.2019.08.002
  15. S. Hashemi, M. R. Azghadi, and A. Zakerolhosseini, "A novel QCA multiplexer design.", In 2008 International Symposium on Telecommunications, IEEE, pp. 692-696, 2008. doi.org/10.1109/ISTEL.2008.4651389
  16. B. Sen, A. Nag, A. De, and B. K. Sikdar, "Towards the hierarchical design of multilayer QCA logic circuit.", Journal of Computational Science, Vol. 11, pp. 233-244, 2015. doi.org/10.1016/j.jocs.2015.09.010