DOI QR코드

DOI QR Code

Convergence Study on the Optimization for Suppression of Starch Hydrolysis using Rutin, Quercetin and Dietary Fiber Mixture Design

루틴, 퀘르세틴, 식이섬유 혼합물 설계를 이용한 전분소화 지연 효과의 최적화에 대한 융합 연구

  • Oh, Imkyung (Food Science and Technology, Sunchon National University) ;
  • Bae, In Young (Food and Nutrition, Far East University)
  • 오임경 (국립순천대학교 식품공학과) ;
  • 배인영 (극동대학교 식품영양학과)
  • Received : 2020.03.12
  • Accepted : 2020.05.20
  • Published : 2020.05.28

Abstract

This study was conducted to develop the efficient system for starch hydrolysis suppression using rutin, quercetin and dietary fiber through the statistical mixture design. The three components were replaced with wheat flour at the level of 10% and the mixed gel with three components was characterized by in vitro starch digestion. The mixture design was applied by simplex-centroid experimental model. The quadratic model (R2=0.86) was well fitted and the obtained regression equation indicated that the significant positive effects was observed in the quercetin and fiber mixture. Based on the statistical results, the best mixing ratio of quercetin and fiber was 72: 28 that led to the lowest predicted glycemic index (pGI). Their interactions on the pGI of starch digestibility were clearly visualized in the 3D surface plot. These results suggested that the mixture of quercetin and fiber interact strongly with wheat flour, consequently retarding starch hydrolysis by 15%.

본 연구는 루틴, 퀘르세틴, 식이섬유가 전분 소화율에 미치는 영향을 통계적 혼합물 설계방법을 이용하여 확인하고자 하였다. 세 가지 성분들은 모두 농도가 증가함에 따라 전분소화 지연 효과가 나타났으며, 그 중에서도 퀘르세틴과 식이섬유가 함께 섞였을 때 가장 높은 지연 효과를 보였다. 이 혼합물 설계는 simplex-centroid 실험설계법을 이용하였고, 최적 모델은 quadratic 모델에서 나타났다. 이때 얻어진 회귀방정식을 통하여 유의한 상승효과를 확인할 수 있었다. 최적화 통계 방법을 사용하여 혼합비를 분석한 결과 퀘르세틴과 식이섬유가 72: 28 비율에서 전분 소화 지연 효과가 최대로 나타나는 것을 확인하였다. 전분소화에 대한 영향을 3차원 표면 도표로 시각화하여 나타내었으며, 이 결과로 퀘르세틴과 식이섬유의 상호작용으로 인하여 전분 소화를 15% 이상 지연시키는 것을 확인할 수 있었다.

Keywords

References

  1. C. I. Abuajah, A. C. Ogbonna & C. M. J. Osuji. (2015). Functional components and medicinal properties of food: a review. Journal of Food Science and Technology, 52(5), 2522-2529. https://doi.org/10.1007/s13197-014-1396-5
  2. M. Saxena, J. Saxena, R. Nema, D. Singh & A. Gupta. (2013). Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry, 6(1), 168-182.
  3. M. Miao, H. Jiang, B. Jiang, T. Zhang, S. W. Cui & Z. Jin. (2014). Phytonutrients for controlling starch digestion: Evaluation of grape skin extract. Food Chemistry, 145, 205-211. https://doi.org/10.1016/j.foodchem.2013.08.056
  4. F. Zhu, Y. Z. Cai, M. Sun & H. Corke. (2009). Effect of phytochemical extracts on the pasting, thermal, and gelling properties of wheat starch. Food Chemistry, 112(4), 919-923. https://doi.org/10.1016/j.foodchem.2008.06.079
  5. F. Zhu, Y. Z. Cai, M. Sun & H. Corke (2008). Effect of phenolic compounds on the pasting and textural properties of wheat starch. Starch-Starke, 60(11), 609-616. https://doi.org/10.1002/star.200800024
  6. F. Barros, J. M. Awika & L. W. Rooney. (2012). Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. Journal of Agricultural and Food Chemistry, 60(46), 11609-11617. https://doi.org/10.1021/jf3034539
  7. Y. Chai, M. Wang & G. Zhang. (2013). Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch. Journal of Agricultural and Food Chemistry, 61(36), 8608-8615. https://doi.org/10.1021/jf402821r
  8. M. Chopra, P. E. Fitzsimons, J. J. Strain, D. I. Thurnham & A. N. Howard. (2000). Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clinical Chemistry, 46(8), 1162-1170. https://doi.org/10.1093/clinchem/46.8.1162
  9. D. R. Ferry et al. (1996). Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Research, 2(4), 659-668.
  10. M. A. Pereira et al. (1996). Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7, 12-dimethylbenz [a] anthracene-induced mammary cancer in rats. Carcinogenesis, 17(6), 1305-1311. https://doi.org/10.1093/carcin/17.6.1305
  11. Y. Q. Li, F. C. Zhou, F. Gao, J. S. Bian & F. Shan. (2009). Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of ${\alpha}$-glucosidase. Journal of Agricultural and Food Chemistry, 57(24), 11463-11468. https://doi.org/10.1021/jf903083h
  12. L. Zhang, X. Yang, S. Li & W. Gao. Preparation, physicochemical characterization and in vitro digestibility on solid complex of maize starches with quercetin. LWT-Food Science and Technology, 44(3), 787-792. https://doi.org/10.1016/j.lwt.2010.09.001
  13. C. S. Brennan. (2005). Dietary fibre, glycaemic response, and diabetes. Molecular Nutrition and Food Research, 49(6), 560-570. https://doi.org/10.1002/mnfr.200500025
  14. I. K Oh, I. Y. Bae & H. G. Lee. (2014). In vitro starch digestion and cake quality: impact of the ratio of soluble and insoluble dietary fiber. International Journal of Biological Macromolecules, 63, 98-103. https://doi.org/10.1016/j.ijbiomac.2013.10.038
  15. M. Minekus et al. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J
  16. I. Goni, A. Garcia-Alonso & F. Saura-Calixto. (1997). A starch hydrolysis procedure to estimate glycemic index. Nutrition Research, 17(3), 427-437. https://doi.org/10.1016/S0271-5317(97)00010-9
  17. S. Shobana, Y. N. Sreerama & N. G. Malleshi (2009). Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of ${\alpha}$-glucosidase and pancreatic amylase. Food Chemistry, 115(4), 1268-1273. https://doi.org/10.1016/j.foodchem.2009.01.042