DOI QR코드

DOI QR Code

Evaluation of Binder jetting 3D Printed Specimens Using Vacuum Impregnation

진공함침을 적용한 바인더젯 3D 프린팅 출력물의 성능 평가

  • 박광민 ((재)한국건설생활환경시험연구원, 건설기술연구센터) ;
  • 박수현 ((재)한국건설생활환경시험연구원, 건설기술연구센터) ;
  • ;
  • 이봉춘 (재)한국건설생활환경시험연구원, 내진센터) ;
  • 노영숙 (서울과학기술대학교 건축학부 건축공학전공)
  • Received : 2020.03.27
  • Accepted : 2020.04.07
  • Published : 2020.04.30

Abstract

This study examined the applicability of the vacuum impregnation post-processing to enhance the strength of binder jet 3D printed output. In addition, permeability, bulk density, and compressive strength of 10 mm, 20 mm, 30 mm, and 40 mm cubic specimens were examined to check the strength limit depending on the 3D prined output size. In result, as the maximum pressure increased, the post-processing storage solution permeated to the inside of the 3D printed sample and thus the permeation area ratio was improved. The compressive strength and the permeation area indicate the correlation between the exponential function of the adjusted R-square factor 0.992. In addition, the bulk density was increased, which can be inferred as the post-processing solution permeated to the inside. In conclusion, in order to enhance the compressive strength of the binder jet 3D printed output, it is essential to permeate the post-processing solution to the inside of the output, and vacuum impregnation can be proposed as an effective method.

본 연구는 바인더젯 3D 프린팅 출력물의 강도증진을 위하여 진공함침 후처리 공정의 적용성을 검토하였다. 또한, 출력물 크기에 따른 강도발현 한계를 확인하기 위하여 10 mm, 20 mm, 30 mm 및 40 mm 큐빅 출력물을 대상으로 침투성, 부피밀도 및 압축강도를 확인하였다. 그 결과, 진공함침 후처리 공정에서 최대압력이 증가함에 따라 후처리 용액이 출력물 내부까지 침투하게 되고 이에 따라서 침투면적률이 개선되는 것을 확인하였다. 출력물 압축강도율과 후처리 용액 침투면적률은 보정결정계수 0.992의 지수함수 형태의 상관관계를 나타내고 있다. 또한, 부피밀도가 증가하였으며 이는 후처리 용액이 내부까지 침투한 것으로 유추할 수 있다. 결론적으로 바인더젯 3D 프린팅 출력물의 강도증진을 위해서는 출력물 내부까지 후처리 용액을 침투하는 것이 필수적이며, 이를 위한 유효한 방법으로써 진공함침을 제안한다.

Keywords

References

  1. ASTM F 2792-12 (2015), Standard Terminology for Additive Manufacturing Technologies.
  2. Rael, R. and San Fratello, V. (2011), Developing concrete polymer building components for 3D printing, Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture, (ACADIA 11), Banff, Canada, University of Calgary, 13-16 October, 2011, 152-157.
  3. Cesaretti, G., Dini, E., De Kestelier, X., Colla, V., and Pambaguian, L. (2014), Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology, Acta Astronaut, 93, 430-450. https://doi.org/10.1016/j.actaastro.2013.07.034
  4. Ming Xia, Jay Sanjayan (2016), Method of formulating geopolymer for 3D printing for construction applications, Materials and Design, 110, 382-390. https://doi.org/10.1016/j.matdes.2016.07.136
  5. Park K.M, Lee J, Lee B.C, (2018), Effects Improvement in Strength of 3D Printed Alkali-activated Slag/Fly Ash Paste, Journal of the Korea Concrete Institute, 30(6), 641-648.(In Korean). https://doi.org/10.4334/JKCI.2018.30.6.641
  6. Gibbons, G. J., Williams, R., Purnell, P., and Farahi, E. (2010). 3D Printing of cement composites, Advances in Applied Ceramics, 109(5), 287-290. https://doi.org/10.1179/174367509X12472364600878
  7. 3D systems (2019), Safety Data Sheet, Available online at: http://infocenter.3dsystems.com/materials/auxiliary/binders/zb63/(accessed 11, Dec 2019).

Cited by

  1. Chloride Diffusion by Build Orientation of Cementitious Material-Based Binder Jetting 3D Printing Mortar vol.14, pp.23, 2020, https://doi.org/10.3390/ma14237452