DOI QR코드

DOI QR Code

초기동결 피해를 받은 전기로 산화 슬래그 혼입 콘크리트의 공극 구조 및 역학적 특성

Pore Structures and Mechanical Properties of Early Frost Damaged Concrete using Electric Arc Furnace Slag as Aggregate

  • 이원준 ((재)한국건설품질연구원, 진단1팀) ;
  • 최소영 (강릉원주대 방재연구소) ;
  • 김일순 (강릉원주대학교 토목공학과) ;
  • 양은익 (강릉원주대학교 토목공학과)
  • 투고 : 2019.12.30
  • 심사 : 2020.04.03
  • 발행 : 2020.04.30

초록

본 논문은 전기로 산화 슬래그를 굵은 골재로 적용하여 제작된 콘크리트에 대하여 초기 재령 시기에 동결 피해를 받았을 때 발생하는 성능 저하에 대한 콘크리트의 역학적 특성과 공극 구조를 평가하고자 하였다. 본 연구에 따르면, 전기로 산화 슬래그 골재를 혼입한 콘크리트의 초기동결 피해가 발생할 경우, 100~150 ㎛ 영역에 존재하던 공극의 피크점이 큰 영역으로 이동하며, 24시간을 초과하지 않도록 해야 200 ㎛ 미만의 공극이 유지되고 500 ㎛ 이상의 공극이 증가하지 않으므로 동결 저항성 개선이 가능한 것으로 판단된다. 또한, 전기로 산화 슬래그와 BFS를 함께 사용하면, 천연골재를 사용한 경우에 비해 상대 압축강도가 증가하였다. 한편, 탄성계수 및 공명진동수의 경우, 압축강도와 비교하여 초기동결로 인해 크게 변화하지 않으므로, 초기동결 피해에 관한 성능 저하를 평가하기 위해서는 각 실험 요소간의 상호관계를 분석해야 할 필요가 있다.

The purpose of the paper is to evaluate the pore structure and mechanical properties of early frost damaged concrete using electric arc furnace slag as aggregate. From the results, when the concrete is exposed to frost damage at an early age, the peak point of pores 100 to 150 ㎛ in diameter were transferred into larger one. When the freezing duration is not exceeded 24 hours, it is possible that the pore distribution of under the 200 ㎛ is maintained and pore size of over 500 ㎛ is not formed, and, the freezing resistance of concrete using EFG could be improved. When BFS was mixed in concrete using EFG as coarse aggregate, the relative strength is higher than that of natural coarse aggregate. Meanwhile, the elastic modulus and resonance frequency did not change significantly due to the early frost damage as compared with the compressive strength. So, it is necessary to analyze the correlation between the experimental results in order to evaluate the performance degradation due to early frost damage.

키워드

참고문헌

  1. Bernhardt, C. J. (1956), Damage Due to Freezing of Fresh Concrete, Journal of American Concrete Institute, 52(1), 573-580.
  2. Corr, D. J., Monteiro, P. J. M., and Bastacky, J. (2002), Microscopic Characterization of Ice Morphology in Entrained Air Voids, ACI Materials Journal, 99(2), 190-195.
  3. Choi, S. Y., Kim, I. S., Choi, Y. S., Yang, E. I. (2019), A Study on the Applicability of Heavyweight Waste Glass and Steel Slag as Aggregate in Heavyweight Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 107-115 (in Korean).
  4. Choi, Y. S., Won, M. S., Yi, S. T., Yang, E. I. (2012), Characteristics of Pore Structure and Chloride Penetration Resistance of Concrete Exposed to Freezing-Thawing, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(6), 073-081 (in Korean). https://doi.org/10.11112/jksmi.2012.16.6.073
  5. George, C. H. and Alan, D. B. (1983), Considerations in the Prevention of Damage to Concrete Frozen at Early Ages, Journal of American Concrete Institute, 80(5), 371-376.
  6. Han, C. G., Han, M. C. (2000), Determination of the Protecting Periods of Frost Damage at Early Age in Cold Weather Concreting, Journal of the Korea Concrete Institute, 12(3), 47-55 (in Korean). https://doi.org/10.22636/JKCI.2000.12.3.47
  7. KSC 14 20 40 (2018), Standard Concrete Specification, Korea Construction Standards Center (in Korean).
  8. Kim, T. K., Choi, S. J., Choi, J. H., Kim, J. H. (2017), Performance Based Evaluation of Concrete Strength and Freeze-Thaw Resistance from Wind Speed - Sunlight Exposure Time Effect, Journal of the Korea Institute for Structural Maintenance and Inspection, 21(1), 49-58 (in Korean). https://doi.org/10.11112/jksmi.2017.21.1.049
  9. Lee, B. D., Kim, H. J., and Kang, H. J. (2008), Affecting Analysis of Air Content on the Freeze-Thaw Durability of Concrete, Proceedings Journal of the Korea Concrete Institute, 20(1), 565-568 (in Korean).
  10. Lee, B. N., Lee, J. S. (2018), Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(3), 1-7 (in Korean). https://doi.org/10.11112/JKSMI.2018.22.3.001
  11. Lee, C. Y., Lee, I. D., Kim, K. W., and Bae, S. Y. (1998), Resistance of Freeze-Thaw and Strength Development of Recycled Concrete, Journal of the Korea Concrete Institute, 10(4), 163-169 (in Korean).
  12. Lee, H. K., Lee, B. J., Oh, K. C., Kim, Y. Y. (2015), Reliability Evaluation for Prediction of Concrete Compressive Strength through Impact Resonance Method and Ultra Pulse Velocity Method, Journal of the Korea Institute for Structural Maintenance and Inspection, 19(4), 18-24 (in Korean). https://doi.org/10.11112/jksmi.2015.19.4.018
  13. Lee, H. S., Lim, H. S. (2012), Development of radiation shielding concrete utilizing electronic arc furnace oxidizing slag, Journal of the Architectural Institute of Korea Structure & Construction, 56(8), 53-60.
  14. Neville, A. M.(1996), Properties of concrete, Longman, Malaysia, 844
  15. Pae, S. W., Yi, S.T., Kim, J. K. (2007), Minimum Curing Time Prediction of Early Age Concrete to Prevent Frost Damage, Journal of Korea Concrete Institute, 19(1), 27-37 (in Korean). https://doi.org/10.4334/JKCI.2007.19.1.027
  16. Pigeon M., Pleau R. (1995), Durability of Concrete in Cold Climates, E &FN SPON, 43-115
  17. Powers, T. C. (1962). Prevention of frost damage to green concrete. Skokie, Ill: Portland Cement Association, Research and Development Laboratories.
  18. Ryu, D. H., Kim, K H., Park, C. G., Son, Y. S. (2009), The Study of Concrete Basic Properties Using Oxidized Electric-furnace-slag Aggregate, Journal of the Architectural Institute of Korea Structure & Construction, 25(8), 43-150 (in Korean).
  19. Yi, S.T., Pae, S. W., Kim, J. K. (2011), Minimum curing time prediction of early-age concrete to prevent frost damage, Construction and Building Materials, 25(3), 1439-1449. https://doi.org/10.1016/j.conbuildmat.2010.09.021