DOI QR코드

DOI QR Code

전기로 산화 슬래그를 굵은 골재로 사용한 콘크리트의 수축 특성

Characteristics of Shrinkage on Concrete using Electric Arc Furnace Slag as Coarse Aggregate

  • 투고 : 2019.12.30
  • 심사 : 2020.02.16
  • 발행 : 2020.02.29

초록

콘크리트의 수축현상은 체적 변화를 발생시키며 균열의 원인이 되어 구조물 내구성 및 안정성에 영향을 미친다. 콘크리트의 수축에 영향을 미치는 요인은 매우 다양하며, 특히 골재는 시멘트 페이스트의 변형을 구속하여 수축 발생을 억제하기 때문에 골재의 특성은 수축 현상에서 중요하게 고려하여야 하는 부분이다. 한편, 골재 부족 현상으로 인해 천연 골재 대체재 개발 및 적용에 대한 연구가 다방면으로 진행되고 있으며 콘크리트용 골재로 사용 되는 재료도 점차 다양해지고 있다. 따라서 본 연구에서는 전기로 산화 슬래그를 굵은 골재로 사용한 콘크리트의 수축 특성을 평가하기 위해 수축 실험을 진행하였으며, 실험 결과와 수축 예측 모델을 비교하여 기존 예측 모델 의 적용성을 검토하였다. 실험 결과, 전기로 산화 슬래그를 굵은 골재로 사용함에 따라 수축량이 감소하는 결과가 나타났으며, 특히 자기수축 저감 효과가 크게 나타났다. 예측 모델과의 비교 시 건조수축과 자기수축 각각 GL2000 모델과 Tazawa 모델이 가장 유사한 예측값을 나타냈으나, 보다 정확한 예측을 위해서는 골재 및 혼화재의 물성을 고려할 수 있도록 보완이 필요한 것으로 판단된다.

The causes of concrete shrinkage are very diverse, in particular, aggregates impact the characteristics of shrinkage in concrete by constraining the shrinkage of cement paste. Meanwhile, owing to the lack of natural aggregate, various alternative aggregates are being developed, and their application in concrete also becomes more diverse. This study aimed to experimentally evaluate the drying and autogenous shrinkage in concrete that was composed of electric arc furnace slag as coarse aggregates. And, the results were compared with prediction models. From the results, the application of electric arc furnace slag can reduce the drying and autogenous shrinkage. In particular, autogenous shrinkage is greatly decreased. The predictions using GL2000 for drying shrinkage and Tazawa model for autogenous shrinkage were similar to the experimental results. However, the most prediction models do not consider the impact of aggregates, hence, the new prediction model should be developed or improved.

키워드

참고문헌

  1. ACI 209R-92 (1992), Prediction of Creep, Shrinkage and Temperature Effect in Concrete Structure, ACI Manual lf Concrete Practice, ACI, 1-42.
  2. Ahmed Alawais and Roger P. West (2019), Ultra-violet and chemical treatment of crumb rubber aggregate in a sustainable concrete mix, Journal of Structural Integrity and Maintenance, 4(3), 144-152 https://doi.org/10.1080/24705314.2019.1594603
  3. Bazant, Z. P., and Kim, J. K. (1978), Improved prediction model for time-dependent deformations of concrete. Part I., Mater. .struct., 24, 327-234. https://doi.org/10.1007/BF02472066
  4. Choi, S. Y., Kim, I. S., Choi, Y. S., Yang, E. I. (2019), A Study on the Applicability of Heavyweight Waste Glass and Steel Slag as Aggregate in Heavyweight Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 107-115 (in Korean).
  5. Euro Code 2 (2004), Design of Concrete Structures, European Committee for Standardization, 30-33
  6. Gardner, N. J., and Lockman, M. J (2001), Design provisions for drying shrinkage and creep and normal-strength concrete, ACI Mater. J., 98(2), 159-167.
  7. Han, M. C., Moon, B. Y. (2017), The Effect of Combinations of Electric Arc Furnace Slag and Lime Stone aggregates on Engineering Properties of Ultra High Strength Concrete with 80MPa, Journal of the Korean Recycled Construction Resources Institute, 5(3), 253-260 (in Korean). https://doi.org/10.14190/JRCR.2017.5.3.253
  8. Japan Concrete Institute Technical Committee Report on Autogenous Shrinkage (1998), Autogenous Shrinkage of Concrete, Proceedings of the International Workshop, ed. Tazawa, E&FN Spon London, 3-63.
  9. Jonasson, J. and Hedlund, H. (2000), An Engineering Model for Creep and Shrinkage in high Performance Concrete, Proceedings of Internatioal RILEM Workshop on Shrinkage of Concrete, Shrinkage 2000, Edited by Baroghel-Bouny, V. and Aitcin, P. C., Paris, France.
  10. Kim, N. W., Bae, J. S. (2009), A Fundamental Study on the Characteristics of Concrete with the Substitution Ratio of the Rapidly Cooled Steel Slag, Journal of the Korea Institute for Structural Maintenance and Inspection, 13(1), 78-87 (in Korean).
  11. Kim, S. M., Park, J. W., Lee, H. H., Kim, K. H., (2008), Study on Utilization of Electric Arc Furnace Oxidizing Slag as Fine Aggregates for Cement Concrete, Journal of the Korean Society of Civil Engineers A, 28(3A), 407-415 (in Korean).
  12. Korea Concrete Institute (2012), Concrete Structure Design Code and Commentary, Korea Concrete Institute, Seoul.
  13. Kwon, S. H., Kim, J. K. (2016), Understanding of Drying Shrinkage and Autogeneous Shrinkage in Concrete, Magazine of the Korea concrete Institute, 31(5), 22-26 (in Korean).
  14. Kwon, S. H., Kim, J. K. (2016), Understanding of Drying Shrinkage and Autogeneous Shrinkage in Concrete, Magazine of the Korea concrete Institute, 31(5), 22-26 (in Korean).
  15. Mindess, S., Young, J. F., Darwin, D. (2003), Concrete, 2nd Edition, Prentice Hall, Inc. U.S.A.
  16. Park, S. K. (2017), Prediction and Reduction Technology of Concrete Shrinkage, Magazine of the Korea concrete Institute, 29(6), 57-63 (in Korean).
  17. Ryu, D. H., Kim, K. H., Park, C. G., Son, Y. S. (2009), The Study of Concrete Basic Properties Using Oxidized Electric-furnace-slag Aggregate. Journal of the Architectural Institute of Korea Structure & Construction, 25(8), 143-150 (in Korean).