DOI QR코드

DOI QR Code

The Properties of OPC-Slag Cement Mixed with Nano-Silica Solution by Mixing Water Weight Replacement Method

나노실리카 졸을 배합수 중량치환 방법으로 혼합한 OPC-slag cement의 특성

  • Received : 2019.10.15
  • Accepted : 2019.12.05
  • Published : 2020.02.29

Abstract

This research is a study on the characteristics of OPC-slag cement using nano-silica solution (NSS) with water-weight substitution method. The new replacement method is a fundamental step to study the behavior of cement with higher NSS replacement rates than previous studies. NSS was replaced by 10%, 20%, 30%, 40%, and 50% of the mixing water weight. As a result, the mechanical and microstructural characteristics were improved. This can be summarized in two ways. First, when the NSS is replaced with mixing water, the homogeneous dispersion action of the nano-silica particles is improved. This promotes initial hydration. Second, substitution of NSS with higher density than mixing water reduces w / b. This forms a dense hydration reaction material. The new substitution method did not show any degradation of mechanical and microstructural properties as compared with the results using the powdered nano-silica particles revealed in the previous study. Therefore, it is considered that the method of weight substitution of NSS used in this study can be applied to the formulation of OPC-slag cement.

본 연구는 nano-silica solution(NSS)을 배합수 중량치환방법을 사용한 OPC-slag cement의 특성에 관한 연구이다. 새로운 치환방법은 선행연구들보다 높은 NSS 치환율의 시멘트에 대한 거동을 연구하기 위한 기초 단계이다. NSS는 배합수 중량의 10%, 20%, 30%, 40%, 그리고 50% 치환하였다. 그 결과 역학적 및 미세구조적 특성이 향상되는 결과를 보였다. 이는 두 가지 원인으로 요약된다. 첫 번째는 NSS를 배합수중량 치환하면 나노 실리카 입자의 균질한 분산작용이 향상된다. 이는 초기 수화작용을 촉진한다. 두 번째는 배합수 보다 밀도가 큰 NSS의 치환은 w/b를 감소시킨다. 이는 치밀한 수화반응물질을 형성시킨다. 새로운 치환방법은 선행연구에서 밝혀진 분말형 나노 실리카 입자를 사용한 결과와 비교하여 역학적과 미세구조 특성의 저하가 나타나지 않았다. 따라서 본 연구에서 사용한 NSS를 배합수 중량 치환한 방법은 OPC-GGBFS cement의 배합에 적용 가능할 것으로 판단된다.

Keywords

References

  1. Acevedo-Martinez, E., Gomez-Zamorano, L.Y., Escalante-Garcia, J.I. (2012) Portland cement-blast furnace slag mortars activated using waterglass: - Part 1: Effect of slag replacement and alkali concentration, Construction and Building Materials, 37, 462-469. https://doi.org/10.1016/j.conbuildmat.2012.07.041
  2. Amin, M., el-hassan, K.A. (2015) Effect of using different types of nano materials on mechanical properties of high strength concrete, Construction and Building Materials, 80, 116-124. https://doi.org/10.1016/j.conbuildmat.2014.12.075
  3. Angulo-Ramirez, D.E., Mejia, de Gutierrez, R., Puertas, F. (2017) Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration, Construction and Building Materials, 140, 119-128. https://doi.org/10.1016/j.conbuildmat.2017.02.092
  4. Ardalan, R.B., Jamshidi, N., Arabameri, H., Joshaghani, A., Mehrinejad, M., Sharafi, P. (2017) Enhancing the permeability and abrasion resistance of concrete using colloidal nano-SiO2 oxide and spraying nanosilicon practices, Construction and Building Materials, 146, 128-135. https://doi.org/10.1016/j.conbuildmat.2017.04.078
  5. Benouisa, A., Grin,i A. (2011) Estimation of concrete's porosity by ultrasounds, Physics Procedia, 21, 53-58. https://doi.org/10.1016/j.phpro.2011.10.009
  6. Bjornstrom, J., Martinelli, A., Matic, A., Borjesson, L., Panas, I. (2004) Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement, Chemical Physics Letters, 392,242-248. https://doi.org/10.1016/j.cplett.2004.05.071
  7. Chithra, S., Kumar, S.R.R.S., Chinnaraju, K. (2016) The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate, Construction and Building Materials, 113, 794-804. https://doi.org/10.1016/j.conbuildmat.2016.03.119
  8. Collins, F., Sanjayan, J. (2000) Effect of pore size distribution on drying shrinking of alkali-activated slag concrete, Cement and Concrete Research, 30(9), 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6
  9. Du, H., Du, S., Liu, X. (2014) Durability performances of concrete with nano-silica, Construction and Building Materials, 73, 705-712. https://doi.org/10.1016/j.conbuildmat.2014.10.014
  10. Dumont, F., Stability of sols, in: Horacio E. Bergna, William O. Roberts (2006) Colloidal Silica: Fundmentals and Applications, CRC Press, 243-252.
  11. Ercikdi, B., Yilmaz, T., Kulekci, G. (2014) Strength and ultrasonic properties of cemented paste backfill, Ultrasonics, 54, 195-204. https://doi.org/10.1016/j.ultras.2013.04.013
  12. Escalante-Garcia, J.I., Castro-Borges, P., Gorokhovsky, A., Rodriguez-Varela, F.J. (2014) Portland cement-blast furnace slag mortars activated using waterglass: Effect of temperature and alkali concentration, Construction and Building Materials, 66, 323-328 https://doi.org/10.1016/j.conbuildmat.2014.04.120
  13. Gaitero, J.J., Campillo, I., Guerrero, A. (2008) Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles, Cement and Concrete Research, 38, 1112-1118. https://doi.org/10.1016/j.cemconres.2008.03.021
  14. Hadj-sadok, A., Kenai, S., Courard, L.,. Darimont, A. (2011) Microstructure and durability of mortars modified with medium active blast furnace slag, Construction and Building Materials 25, 1018-1025. https://doi.org/10.1016/j.conbuildmat.2010.06.077
  15. Hossein,i P., Hosseinpourpia, R., Pajum, A., Khodavirdi, M.M., Izadi, H., Vaezi, A. (2014) Effect of nano-particles and aminosilane interaction on the performances of cement-based composites: An experimental study, Construction and Building Materials, 66, 113-124. https://doi.org/10.1016/j.conbuildmat.2014.05.047
  16. Hou, P., Kawashima, S., Kong, D., Corr, D.J., Qian, J., Shah, S.P. (2013) Modification effects of colloidal nanoSiO2 on cement hydration and its gel property, Composites: Part B, 45, 440-448. https://doi.org/10.1016/j.compositesb.2012.05.056
  17. [R14] Ismael, R., Silva, J.V., Carmo, R.N.F.,Soldado, E. , Lourenco, C., Costa, H., Julio E. (2016)Influence of nano-SiO2 and nano-Al2O3 additions on steel-to-concrete bonding, Construction and Building Materials, 125, 1080-1092. https://doi.org/10.1016/j.conbuildmat.2016.08.152
  18. Jiang, Z., Sun, Z., Wang, P. (2005) Autogenous relative humidity change an autogenous shrinkage of high-performance cement pastes, Cement and Concrete Research, 35(8), 1539-45. https://doi.org/10.1016/j.cemconres.2004.06.028
  19. Jo, B.-W., Kim, C.-H.,Tae, G.-h., Park, J.-B. (2007) Characteristics of cement mortar with nano-SiO2 particles, Construction and Building Materials, 21, 1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  20. Kong, D., Corr, D.J., Hou, P., Yang, Y., Shah, S.P. (2015) Influence of colloidal silica on fresh properties of cement paste as compared to nano-silica powder with agglomerates in micron-scale, Cement and Concrete Composites, 63, 30-41. https://doi.org/10.1016/j.cemconcomp.2015.08.002
  21. Li, L.G., Huang, Z.H., Zhu, J., Kwan, A.K.H., Chen, H.Y. (2017) Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar, Construction and Building Materials, 140, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.02.115
  22. Liu, M., Zhou, Z., Zhan,g X., Yang, X., Cheng, X. (2016) The synergistic effect of nano-silica with blast furnace slag in cement based materials, Construction and Building Materials, 126, 624-631. https://doi.org/10.1016/j.conbuildmat.2016.09.078
  23. Massana, J., Reyes, E., Bernal, J., Leon, N., Sanchez-Espinosa, E. (2018) Influence of nano- and micro-silica additions on the durability of a high-performance self-compacting concrete, Construction and Building Materials, 165, 93-103. https://doi.org/10.1016/j.conbuildmat.2017.12.100
  24. Mindess, S., Young, J.F., Darwin, D. (2003) Concrete. 2nd ed. Upper Saddle River, NJ, Prentice Hall.
  25. Mohseni, E., Miyandehi, B.M., Yang, J., Yazdi, M.A. (2015) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash, Construction and Building Materials, 84, 331-340. https://doi.org/10.1016/j.conbuildmat.2015.03.006
  26. Najigivi, A., Khaloo, A., Iraji zad, A., Rashid, S.A. (2013) Investigating the effects of using different types of SiO2 nanoparticles on the mechanical properties of binary blended concrete, Composites: Part B, 54, 52-58. https://doi.org/10.1016/j.compositesb.2013.04.035
  27. Nazari, A., Riahi, S. (2011a) Splitting tensile strength of concrete using ground granulated blast furnace slag and SiO2 nanoparticles as binder, Energy and Buildings, 43, 864-872. https://doi.org/10.1016/j.enbuild.2010.12.006
  28. Nazari, A., Riahi, S. (2011b) The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete, Composites: Part B, 42, 570-578. https://doi.org/10.1016/j.compositesb.2010.09.025
  29. Neto, A.A.M., Cincotto, M.A., Repette, W. (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement, Cement and Concrete Research, 38(4) 565-574.
  30. Nili, M., Ehsani, A. (2015) Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume, Materials and Design, 75, 174-183. https://doi.org/10.1016/j.matdes.2015.03.024
  31. Norhasri, M.S.M., Hamidah, M.S., Mohd Fadzil, A. (2017) Applications of using nano material in concrete: A review, Construction and Building Materials,133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
  32. Oltulu, M., Sahin, R. (2011) Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume, Materials Science and Engineering A, 528, 7012-7019. https://doi.org/10.1016/j.msea.2011.05.054
  33. Oltulu, M., Şahin, R. (2013) Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study, Energy and Buildings, 58, 292-301. https://doi.org/10.1016/j.enbuild.2012.12.014
  34. Qing, Y., Zenan, Z., Deyu, K., Rongshen, C. (2007) Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume, Construction and Building Materials, 21, 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001
  35. Quercia, G., Hüsken, G., Brouwers, H.J.H. (2012) Water demand of amorphous nano silica and its impact on the workability of cement paste, Cement and Concrete Research, 42, 344-357. https://doi.org/10.1016/j.cemconres.2011.10.008
  36. Rashad, A.M. (2013) A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementtitious materials - A short guide for Civil Engineer, Materials and Design, 52, 143-157. https://doi.org/10.1016/j.matdes.2013.05.035
  37. Rupasingle, M., Nicolas, R.S., Mendis, P., Sofi, M., Ngo, T. (2017) Investigation of strength and hydration characteristics on nano-silica incorporated cement paste, Cement and Concrete Composites, 80, 17-30. https://doi.org/10.1016/j.cemconcomp.2017.02.011
  38. Said, A.M., Zeidan, M.S., Bassuoni, M.T., Tian, Y. (2012) Properties of concrete incorporating nano-silica, Construction and Building Materials, 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
  39. Sanchez, F., Sobolev, K. (2010) Nanotechnology in concrete - A review, Construction and Building Materials, 24, 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
  40. Senff, L., Labrincha, J.A., Ferreira, V.M., Hotza, D., Repette, W.L. (2009) Effect of nano-silica on rheology and fresh properties of cement pastes and mortars, Construction and Building Materials, 23, 2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005
  41. Shekari, A.H., Razzaghi, M.S. (2011) Influence of nano particles on durability and mechanical properties of high performance concrete, Procedia Engineering, 14,3036-3041. https://doi.org/10.1016/j.proeng.2011.07.382
  42. Singh, L.P.,Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M., Ahalawat, S. (2013) Beneficial role of nanosilica in cement based materials, -A review, Construction and Building materials, 47,
  43. Stefanidou, M., Papayianni, I. (2012) Influence of nano-SiO2 on the Portland cement pastes, Composites: Part B, 43, 2706-2710. https://doi.org/10.1016/j.compositesb.2011.12.015
  44. Vergara, L.,, Miralles R.,, Gosalbez, J., Juanes, F.J., Ullate L.G., Anaya, J.J.,. Hernandez, M.G, Izquierdo, M.A.G.,(2001) NDE ultrasonic methods to characterise the porosity of mortar, NDT&E International 34, 557-562. https://doi.org/10.1016/S0963-8695(01)00020-2
  45. Wittmann, F.H., Creep and shrinkage mechanisms. In: Bazant Z.P. Wittmann F.H. (1982) Creep and shrinkage in concrete structures, Chichester, Wiley,129-161.
  46. Wu, D., Zhang, Y., Liu, Y. (2016) Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash, Ultrasonics, 64, 89-96. https://doi.org/10.1016/j.ultras.2015.08.004
  47. Wu, Z., Young, J.F. (1984) The hydration of tricalcium silicate in the presence of colloidal silica, Journal of Materials Science, 19, 3477-3486. https://doi.org/10.1007/BF02396922
  48. Xu, Z., Zhou, Z,, Du, P., Cheng, X. (2016) Effects of nano-silica on hydration properties of tricalcium silicate, Construction and Building Materials, 125, 1169-1177. https://doi.org/10.1016/j.conbuildmat.2016.09.003
  49. Zhang, M.-H., Islam, J., Peethamparan, S. (2012) Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag, Cement & Concrete Composites, 34, 650-662. https://doi.org/10.1016/j.cemconcomp.2012.02.005
  50. Zhang, P., Wan, J., Wang, K., Li Q. (2017) Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: A state-of-the-art review, Construction and Building Materials, 148, 648-658. https://doi.org/10.1016/j.conbuildmat.2017.05.059
  51. Zhang, M.-H., Islam, J. (2012) Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag, Construction and Building Materials, 29, 573-580. https://doi.org/10.1016/j.conbuildmat.2011.11.013
  52. Zhang, M.-H., Gjorv, O.E. (1991) Effect of silica fume on cement hydration in low porosity cement pastes, Cement and Concrete Research, 21, 800-808. https://doi.org/10.1016/0008-8846(91)90175-H
  53. Zhang, W., Hama, Y., Na, S.H. (2015) Drying shrinkage and microstructure characteristics of mortar incorporating ground granulated blast furnace slag and shrinkage reducing admixture, Construction and Building Materials, 93, 267-277. https://doi.org/10.1016/j.conbuildmat.2015.05.103