DOI QR코드

DOI QR Code

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • 투고 : 2019.05.09
  • 심사 : 2019.08.20
  • 발행 : 2020.03.25

초록

Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

키워드

참고문헌

  1. N. OECD, State-of-the-Art Report on Light Water Reactor Accident-Tolerant Fuels, 2018.
  2. S. J. Zinkle, K. A. Terrani, J. C. Gehin, L. J. Ott, L. L. Snead, Accident tolerant fuels for LWRs: a perspective 448 (1) 374-379. doi:10.1016/j.jnucmat.2013.12.005. URL//www.sciencedirect.com/science/article/pii/S0022311513012919
  3. K.A. Terrani, Accident tolerant fuel cladding development: promise, status, and challenges 501 13-30, URL, http://www.sciencedirect.com/science/article/pii/S0022311517316227. https://doi.org/10.1016/j.jnucmat.2017.12.043
  4. L. Braase, Enhanced accident tolerant LWR fuels national metrics workshop report, URL, https://www.osti.gov/biblio/1073785.
  5. IAEA, Accident tolerant fuel concepts for light water reactors, URL, http://www-pub.iaea.org/books/IAEABooks/10972/Accident-Tolerant-Fuel-Concepts-for-Light-Water-Reactors.
  6. J.-H. Park, H.-G. Kim, J.-y. Park, Y.-I. Jung, D.-J. Park, Y.-H. Koo, High temperature steam-oxidation behavior of arc ion plated cr coatings for accident tolerant fuel claddings 280 256-259. doi:10.1016/j.surfcoat.2015.09.022. URL//www.sciencedirect.com/science/article/pii/S0257897215302607
  7. C. Tang, M. Stueber, H.J. Seifert, M. Steinbrueck, Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings, 35 (3) 141-165, https://www.degruyter.com/view/j/corrrev.2017.35.issue-3/corrrev-2017-0010/corrrev-2017-0010.xml. https://doi.org/10.1515/corrrev-2017-0010
  8. I. Younker, M. Fratoni, Neutronic evaluation of coating and cladding materials for accident tolerant fuels 88 10-18, URL,//www.sciencedirect.com/science/article/pii/S0149197015301074. https://doi.org/10.1016/j.pnucene.2015.11.006
  9. F. Fejt, M. Sevecek, J. Frybort, O. Novak, Study on neutronics of VVER-1200 with accident tolerant fuel cladding 124 579-591, URL, http://www.sciencedirect.com/science/article/pii/S030645491830567X. https://doi.org/10.1016/j.anucene.2018.10.040
  10. M. Sevecek, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne, K. Shirvan, Development of cr cold sprayecoated fuel cladding with enhanced accident tolerance, 50 (2) 229-236, http://www.sciencedirect.com/science/article/pii/S1738573317307283. https://doi.org/10.1016/j.net.2017.12.011
  11. J. Krejci, M. Sevecek, L. Cvrcek, J. Kabatova, F. Manoch, Chromium and chromium nitride coated cladding for nuclear reactor fuel, in: Proceedings of the 20th International Corrosion Congress, EUROCORR, 2017.
  12. M. Sevecek, M. Valach, Evaluation metrics applied to accident tolerant fuel cladding concepts for VVER reactors 4 89, URL, https://ojs.cvut.cz/ojs/index.php/APP/article/view/3749. https://doi.org/10.14311/AP.2016.4.0089
  13. B. Y. Volkov, V. V. Yakovlev, E. P. Ryazantsev, V. V. Kalygin, A. V. Burukin, A. V. Ivanov, Y. V. Pimenov, Particulars of the In-Reactor Behavior of VVER and PWR Uranium Dioxide Fuel with Pellets of Different Geometry vol. 114 (3) 169-176. https://doi.org/10.1007/s10512-013-9691-1
  14. Z. Yang, Y. Niu, J. Xue, T. Liu, C. Chang, X. Zheng, Steam oxidation resistance of plasma sprayed chromium-containing coatings at 1200c 0 (0), URL, https://onlinelibrary.wiley.com/doi/abs/10.1002/maco.201810156.
  15. J.-C. Brachet, I. Idarraga-Trujillo, M.L. Flem, M.L. Saux, V. Vandenberghe, S. Urvoy, E. Rouesne, T. Guilbert, C. Toffolon-Masclet, M. Tupin, C. Phalippou, F. Lomello, F. Schuster, A. Billard, G. Velisa, C. Ducros, F. Sanchette, Early studies on cr-coated zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors 517 268-285, URL, https://linkinghub.elsevier.com/retrieve/pii/S0022311518316519. https://doi.org/10.1016/j.jnucmat.2019.02.018
  16. J.C. Brachet, C. Lorrette, A. Michaux, C. Sauder, I. Idarraga-Trujillo, M. Le Saux, A. Ambard, CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions), URL, http://www-ist.cea.fr/publicea/exl-doc/201400000359_s1.pdf.
  17. S. Kuprin, V. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, P.N. V'yugov, Vacuumarc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air 465 400-406, URL, //www.sciencedirect.com/science/article/pii/S002231151530043X. https://doi.org/10.1016/j.jnucmat.2015.06.016
  18. J. Bischoff, C. Delafoy, C. Vauglin, P. Barberis, C. Roubeyrie, D. Perche, D. Duthoo, F. Schuster, J.-C. Brachet, E.W. Schweitzer, K. Nimishakavi, AREVA NP's enhanced accident-tolerant fuel developments: focus on cr-coated m5 cladding, 50 (2) 223-228, http://www.sciencedirect.com/science/article/pii/S1738573317307945. https://doi.org/10.1016/j.net.2017.12.004
  19. Y.-H. Koo, J.-H. Yang, J.-Y. Park, K.-S. Kim, H.-G. Kim, D.-J. Kim, Y.-I. Jung, K.-W. Song, KAERI's Development of LWR Accident-Tolerant Fuel 186 (vol. 2) 295-304, bibtex: koo2014kaeri. https://doi.org/10.13182/NT13-89
  20. A. Michau, F. Maury, F. Schuster, F. Lomello, J.C. Brachet, E. Rouesne, M. Le Saux, R. Boichot, M. Pons, High-temperature oxidation resistance of chromium-based coatings deposited by DLI-MOCVD for enhanced protection of the inner surface of long tubes 349 1048-1057, URL, http://www.sciencedirect.com/science/article/pii/S0257897218306625. https://doi.org/10.1016/j.surfcoat.2018.05.088
  21. D.V. Sidelev, E.B. Kashkarov, M.S. Syrtanov, V.P. Krivobokov, Nickel-chromium (niecr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings 369 69-78, URL, https://linkinghub.elsevier.com/retrieve/pii/S0257897219304281. https://doi.org/10.1016/j.surfcoat.2019.04.057
  22. B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, P. Xu, J. Romero, H. Shah, K. Sridharan, Development of cold spray chromium coatings for improved accident tolerant zirconium-alloy cladding 519 247-254, URL, https://linkinghub.elsevier.com/retrieve/pii/S0022311518309620. https://doi.org/10.1016/j.jnucmat.2019.03.039
  23. K. Daub, R. Van Nieuwenhove, H. Nordin, Investigation of the impact of coatings on corrosion and hydrogen uptake of zircaloy-4 467 260-270, URL, http://linkinghub.elsevier.com/retrieve/pii/S0022311515302300. https://doi.org/10.1016/j.jnucmat.2015.09.041
  24. J. Rabe, K. Daub, H. Nordin, R. Van Nieuwenhove, T. Karlsen, Marie, R. Szoke, Investigation of PVD Coatings for Nuclear Applications: Hight Temperature Steam Exposure testingBibtex: IFE_numat.
  25. R. Van Nieuwenhove, V. Andersson, J. Balak, B. Oberlander, In-pile testing of CrN, TiAlN, and AlCrN coatings on zircaloy cladding in the halden reactor, in: Zirconium in the Nuclear Industry: 18th International Symposium, ASTM International.
  26. C. Meng, L. Yang, Y. Wu, J. Tan, W. Dang, X. He, X. Ma, Study of the oxidation behavior of CrN coating on zr alloy in air 515 354-369, URL, http://www.sciencedirect.com/science/article/pii/S0022311518310274. https://doi.org/10.1016/j.jnucmat.2019.01.006
  27. J. Krejci, M. Sevecek, L. Cvrcek, Development of Chromium and Chromium Nitride Coated Cladding for VVER Reactors.
  28. I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, 127 (2) 203-218, http://www.sciencedirect.com/science/article/pii/S0257897200005661. https://doi.org/10.1016/S0257-8972(00)00566-1
  29. G. Brauer, B. Szyszka, M. Vergohl, R. Bandorf, Magnetron sputtering - milestones of 30 years, 84 (12) 1354-1359, http://www.sciencedirect.com/science/article/pii/S0042207X10000163. https://doi.org/10.1016/j.vacuum.2009.12.014
  30. P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, 56 (3) 159-172, http://www.sciencedirect.com/science/article/pii/S0042207X9900189X. https://doi.org/10.1016/S0042-207X(99)00189-X
  31. J.A. Thornton, The microstructure of sputteredeposited coatings, 4 (6) 3059-3065, http://avs.scitation.org/doi/abs/10.1116/1.573628.
  32. J. Bischoff, P. Blanpain, J. Brachet, C. Lorrette, A. Ambard, J. Strumpel, K. McKoy, Development of Fuels with Enhanced Accident Tolerance 22Bibtex: Bischoff2016development.
  33. Y.-H. Koo, J.-H. Yang, J.-Y. Park, Y.-S. Yang, H.-K. Kim, W.-K. In, K.-W. Song, Status of Dual Cooled Annular Fuel Development in KAERI.
  34. A. Krausova, L. Tuma, M. Novak, L. Cvrcek, J. Krejci, J. Macak, Chromium coating as a surface protection of zirconium alloys, 61 (5) 169-172, https://content.sciendo.com/view/journals/kom/61/5/article-p169.xml. https://doi.org/10.1515/kom-2017-0021
  35. R.E. Pawel, J.V. Cathcart, R.A. McKee, The kinetics of oxidation of zircaloy-4 in steam at high temperatures, 126 (7) 1105-1111, http://jes.ecsdl.org/content/126/7/1105. https://doi.org/10.1149/1.2129227
  36. R.E. Williford, Safety margins in zircaloy oxidation and embrittlement criteria for emergency core cooling system acceptance, 74 (3) 333-345, https://doi. org/10.13182/NT86-A33836.
  37. Y. Yan, B. E. Garrison, T. S. Smith, M. Howell, J. R. Keiser, G. L. Bell, Investigation of high-temperature oxidation kinetics and residual ductility of oxidized samples of sponge-based -110 alloy cladding tubes vol. 2 (21) 1203-1208. https://doi.org/10.1557/adv.2016.641
  38. C. GRANDJEAN, G. HACHE, Cladding Oxidation. Resistance to Quench and Post-quench Loads. 239.
  39. OECD, Nuclear Fuel Safety Criteria Technical Review (second ed.), Nuclear Safety, OECD Publishing. doi:10.1787/9789264991781-en. URL http://www.oecd-ilibrary.org/nuclear-energy/nuclear-fuel-safety-criteria-technicalreview-second-edition_9789264991781-en.
  40. M. Negyesi, V. Kloucek, J. Lorincik, L. Novotny, J. Kabatova, S. Linhart, J. Adamek, J. Siegl, V. Vrtilkova, Proposal of new o-beta oxidation criterion for new types of the zr1nb alloy of fuel claddings 261 260-268, URL, http://www.sciencedirect.com/science/article/pii/S0029549312005353. https://doi.org/10.1016/j.nucengdes.2012.09.033
  41. J. Brachet, V. Vandenberghe-Maillot, L. Portier, D. Gilbon, A. Lesbros, N. Waeckel, J. Mardon, Hydrogen content, preoxidation, and cooling scenario effects on post-quench microstructure and mechanical properties of zircaloy-4 and m5(R) alloys in LOCA conditions doi:10.1520/STP48132S, URL, http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP48132S.htm.
  42. X. Wenxin, Y. Shihao, Reaction diffusion in chromium-zircaloy-2 system, URL, http://inis.iaea.org/Search/search.aspx?orig_q=RN:33019170.
  43. K. KENG, M. Hamalainen, R. Luoma, A Thermodynamic Assessment of the Cr-Zr System 84 (1) 23-28, (bibtex*[publisher=Hanser]).
  44. M. Steinbruck, M. Bottcher, Air oxidation of zircaloy-4, m5(R) and $ZIRLO^{TM}$ cladding alloys at high temperatures, 414 (2) 276-285, https://www.sciencedirect.com/science/article/pii/S0022311511003631. https://doi.org/10.1016/j.jnucmat.2011.04.012
  45. E.J. Lahoda, P. Xu, Z. Karoutas, S. Ray, K. Sridharan, B. Maier, G. Johnson, Cold spray chromium coating for nuclear fuel rods, URL, http://patents.google.com/patent/US20180025793A1/en.

피인용 문헌

  1. Chromium coatings deposited by cooled and hot target magnetron sputtering for accident tolerant nuclear fuel claddings vol.389, 2020, https://doi.org/10.1016/j.surfcoat.2020.125618
  2. Application and Development Progress of Cr-Based Surface Coating in Nuclear Fuel Elements: II. Current Status and Shortcomings of Performance Studies vol.10, pp.9, 2020, https://doi.org/10.3390/coatings10090835
  3. Protection of Zr Alloy under High-Temperature Air Oxidation: A Multilayer Coating Approach vol.11, pp.2, 2020, https://doi.org/10.3390/coatings11020227
  4. High-Temperature Oxidation of Cr-Coated Resistance Upset Welds Made from E110 Alloy vol.11, pp.5, 2021, https://doi.org/10.3390/coatings11050577
  5. Temelin Irradiated Cladding Project - TIRCLAD vol.1178, 2020, https://doi.org/10.1088/1757-899x/1178/1/012041
  6. The oxidation behaviors of Cr2N and Cr/Cr2N multilayer coatings on Zircaloy-4 tubes in high temperature environment vol.9, pp.3, 2020, https://doi.org/10.1088/2051-672x/ac2564
  7. Corrosion Behavior of Chromium Coated Zy-4 Cladding under CANDU Primary Circuit Conditions vol.11, pp.11, 2020, https://doi.org/10.3390/coatings11111417
  8. Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings at LWR operating temperature by in-situ digital image correlation vol.429, 2022, https://doi.org/10.1016/j.surfcoat.2021.127909
  9. High-temperature oxidation of Cr-coated laser beam welds made from E110 zirconium alloy vol.195, 2020, https://doi.org/10.1016/j.corsci.2021.110018
  10. Review on chromium coated zirconium alloy accident tolerant fuel cladding vol.895, pp.p1, 2020, https://doi.org/10.1016/j.jallcom.2021.162450