DOI QR코드

DOI QR Code

Second order integral sliding mode observer and controller for a nuclear reactor

  • Surjagade, Piyush V. (Homi Bhabha National Institute) ;
  • Shimjith, S.R. (Homi Bhabha National Institute) ;
  • Tiwari, A.P. (Homi Bhabha National Institute)
  • Received : 2018.12.07
  • Accepted : 2019.08.18
  • Published : 2020.03.25

Abstract

This paper presents an observer-based chattering free robust optimal control scheme to regulate the total power of a nuclear reactor. The non-linear model of nuclear reactor is linearized around a steady state operating point to obtain a linear model for which an optimal second order integral sliding mode controller is designed. A second order integral sliding mode observer is also designed to estimate the unmeasurable states. In order to avoid the chattering effect, the discontinuous input of both observer and controller are designed using the super-twisting algorithm. The proposed controller is realized by combining an optimal linear tracking controller with a second order integral sliding mode controller to ensure minimum control effort and robustness of the closed-loop system in the presence of uncertainties. The condition for the selection of gains of discontinuous control based on the super-twisting algorithm is derived using a strict Lyapunov function. Performance of the proposed observer based control scheme is demonstrated through non-linear simulation studies.

Keywords

References

  1. G.D. Reddy, B. Bandyopadhyay, A.P. Tiwari, Multirate output feedback based sliding mode spatial control for a large PHWR, IEEE Trans. Nucl. Sci. 54 (6) (Dec 2007) 2677-2686. https://doi.org/10.1109/TNS.2007.910042
  2. R.K. Munje, B.M. Patre, S.R. Shimjith, A.P. Tiwari, Sliding mode control for spatial stabilization of advanced heavy water reactor, IEEE Trans. Nucl. Sci. 60 (4) (Aug 2013) 3040-3050. https://doi.org/10.1109/TNS.2013.2264635
  3. P.V. Surjagade, A.P. Tiwari, S.R. Shimjith, Robust optimal integral sliding mode controller for total power control of large PHWRs, IEEE Trans. Nucl. Sci. 65 (7) (July 2018) 1331-1344. https://doi.org/10.1109/TNS.2018.2841986
  4. M. Eom, D. Chwa, D. Baang, Robust disturbance observer-based feedback linearization control for a research reactor considering a power change rate constraint, IEEE Trans. Nucl. Sci. 62 (3) (June 2015) 1301-1312. https://doi.org/10.1109/TNS.2015.2418815
  5. G.R. Ansarifar, M. Rafiei, Second-order sliding-mode control for a pressurized water nuclear reactor considering the xenon concentration feedback, Nucl. Eng. Technol. 47 (1) (2015) 94-101. https://doi.org/10.1016/j.net.2014.11.003
  6. S. Qaiser, A. Bhatti, M. Iqbal, R. Samar, J. Qadir, Model validation and higher order sliding mode controller design for a research reactor, Ann. Nucl. Energy 36 (1) (2009) 37-45. https://doi.org/10.1016/j.anucene.2008.10.005
  7. M.Z. Nejad, G. Ansarifar, Adaptive observer based adaptive control for P.W.R nuclear reactors during load following operation with bounded xenon oscillations using lyapunov approach, Ann. Nucl. Energy 121 (2018) 382-405. https://doi.org/10.1016/j.anucene.2018.07.038
  8. D.S. Naidu, in: R.C. Dorf (Ed.), Optimal Control Systems, CRC Press, Inc., Boca Raton, FL, USA, 2002.
  9. L. Fridman, A. Poznyak, F. Bejarano, Robust Output LQ Optimal Control via Integral Sliding Modes, March 2014.
  10. C. Edwards, S.K. Spurgeon, Sliding Mode Control: Theory and Applications, Taylor and Francis, 1998.
  11. V. Utkin, J. Shi, Integral sliding mode in systems operating under uncertainty conditions, in: Proceedings of 35th IEEE Conference on Decision and Control vol. 4, Dec 1996, pp. 4591-4596.
  12. J.J.E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ, 1991. Pearson.
  13. A. Levant, Sliding order and sliding accuracy in sliding mode control, Int. J. Control 58 (6) (1993) 1247-1263. https://doi.org/10.1080/00207179308923053
  14. S.R. Shimjith, A.P. Tiwari, B. Bandyopadhyay, Design of fast output sampling controller for three-time-scale systems: application to spatial control of advanced heavy water reactor, IEEE Trans. Nucl. Sci. 58 (6) (Dec 2011) 3305-3316. https://doi.org/10.1109/TNS.2011.2170850
  15. F. Chen, M.W. Dunnigan, Comparative study of a sliding-mode observer and Kalman filters for full state estimation in an induction machine, IEE Proc. Electr. Power Appl. 149 (1) (Jan 2002) 53-64. https://doi.org/10.1049/ip-epa:20020018
  16. S. Drakunov, V. Utkin, Sliding mode observers. tutorial, in: Proceedings of 34th IEEE Conference on Decision and Control 4, Dec 1995, pp. 3376-3378.
  17. G. Ablay, Robust reactivity, neutron source, and precursor estimators for nuclear reactors, Nucl. Eng. Des. 265 (2013) 526-533. https://doi.org/10.1016/j.nucengdes.2013.07.025
  18. E. Jimenez-Rodriguez, E. Mejia-Estrada, O. Jaramillo, J.D. Sanchez-Torres, An integral sliding mode observer for linear systems, in: XVII Latin American Conference Of Automatic Control, IFAC, Medellin, Colombia, 2016, pp. 143-147.
  19. J.J. Rath, M. Defoort, H.R. Karimi, K.C. Veluvolu, Output feedback active suspension control with higher order terminal sliding mode, IEEE Trans. Ind. Electron. 64 (2) (Feb 2017) 1392-1403. https://doi.org/10.1109/TIE.2016.2611587
  20. J. Davila, L. Fridman, A. Levant, Second-order sliding-mode observer for mechanical systems, IEEE Trans. Autom. Control 50 (11) (Nov 2005) 1785-1789. https://doi.org/10.1109/TAC.2005.858636
  21. J.A. Moreno, M. Osorio, Strict Lyapunov functions for the super-twisting algorithm, IEEE Trans. Autom. Control 57 (4) (April 2012) 1035-1040. https://doi.org/10.1109/TAC.2012.2186179