DOI QR코드

DOI QR Code

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M. (Electrical Engineering Department, Faculty of Engineering in Shoubra, Benha University) ;
  • Abdelfattah, H. (Electrical Engineering Department, Faculty of Industrial Education, Suez University)
  • Received : 2019.06.09
  • Accepted : 2019.08.07
  • Published : 2020.03.25

Abstract

Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

Keywords

References

  1. G. Li, X. Wang, B. Liang, X. Li, B. Zhang, Y. Zou, Modeling and control of nuclear reactor cores for electricity generation, A review of advanced technologies, Renew. Sustain. Energy Rev. 60 (1) (2016) 116-128. https://doi.org/10.1016/j.rser.2016.01.116
  2. E. Hatami, H. Salarieh, N. Vosoughi, Design of a fault tolerated intelligent control system for a nuclear reactor power control: using extended Kalman filter, J. Process Control 24 (7) (2014) 1076-1084. https://doi.org/10.1016/j.jprocont.2014.04.012
  3. R.M. Edwards, K.Y. Lee, M.A. Schultz, State feedback assisted classical control: an incremental approach to control modernization of existing and future nuclear reactors and power plants, Nucl. Technol. 92 (2) (1990) 167-185. https://doi.org/10.13182/NT90-A34468
  4. M.G. Park, N.Z. Cho, Design of a non-linear model-based controller with adaptive PI gains for robust control of a nuclear reactor, Prog. Nucl. Energy 27 (1) (1992) 37-49. https://doi.org/10.1016/0149-1970(92)90016-V
  5. M.G. Park, N.Z. Cho, Time-optimal control of a nuclear reactor power with adaptive proportional integral feed forward gains, IEEE Trans. Nucl. Sci. 40 (3) (1993) 266-270. https://doi.org/10.1109/23.221049
  6. M. Santhiya, N. Pappa, Evolutionary algorithms based fuzzy logic controller for pressurized water nuclear reactor, in: IEEE international conference on advanced communications, control and computing technologies, 2014.
  7. S. Das, I. Pan, S. Das, Fractional order fuzzy control of nuclear reactor power with thermal-hydraulic effects in the presence of random network induced delay and sensor noise having long range dependence, Energy Convers. Manag. 68 (1) (2013) 200-218. https://doi.org/10.1016/j.enconman.2013.01.003
  8. M.N. Khajavi, M.B. Menhaj, A.A. Suratgar, A neural network controller for load following operation of nuclear reactors, Ann. Nucl. Energy 29 (1) (2002) 751-760. https://doi.org/10.1016/S0306-4549(01)00075-5
  9. J.H. Perez-Cruz, A. Poznyak, Neural control for power ascent of a TRIGA reactor, in: American Control Conference, 2008.
  10. S. Saadatzi, G. Ansarifar, Robust observer-based non-linear control for PWR nuclear reactors with bounded xenon oscillations during load-following operation using two-point nuclear reactor model, Int. J. Nucl. Energy Sci. Technol. 11 (1) (2017) 22-55. https://doi.org/10.1504/IJNEST.2017.085075
  11. K. Torabi, O. Safarzadeh, A. Rahimi-Moghaddam, Robust control of the PWR core power using quantitative feedback theory, IEEE Trans. Nucl. Sci. 58 (1) (2011) 258-266. https://doi.org/10.1109/TNS.2010.2094207
  12. M. Boroushaki, M.B. Ghofrani, C. Lucas, An intelligent nuclear reactor core controller for load following operations, using recurrent neural networks and fuzzy systems, Ann. Nucl. Energy 29 (10) (2003) 63-80.
  13. H. Arab-Alibeik, S. Setayeshi, Adaptive control of a PWR core power using neural networks, Ann. Nucl. Energy 32 (10) (2005) 588-605. https://doi.org/10.1016/j.anucene.2004.11.004
  14. G.J. Wu, B. Zeng, Z. Xu, W. Wu, X. Ma, State-space model predictive control method for core power control in pressurized water reactor nuclear power stations, Nucl. Eng. Technol. 49 (1) (2017) 134-140. https://doi.org/10.1016/j.net.2016.07.008
  15. X. Liu, D. Jiang, K.Y. Lee, Decentralized fuzzy MPC on spatial power control of a large PHWR, IEEE Trans. Nucl. Sci. 63 (4) (2016) 2343-2351. https://doi.org/10.1109/TNS.2016.2580558
  16. V.I. Utkin, Variable structure systems with sliding modes, IEEE Trans. Autom. Control 22 (2) (1977) 212-222. https://doi.org/10.1109/TAC.1977.1101446
  17. A. Pisano, E. Usai, Sliding mode control: a survey with applications in math, Math. Comput. Simulat. 81 (5) (2011) 954-979. https://doi.org/10.1016/j.matcom.2010.10.003
  18. H. Jerbi, Global feedback stabilization of new class of bilinear systems, Syst. Control Lett. 42 (1) (2001) 313-322. https://doi.org/10.1016/S0167-6911(00)00101-8
  19. P.O. Gutman, Stabilizing controllers for bilinear systems, IEEE Trans. Autom. Control 26 (4) (1981) 917-922. https://doi.org/10.1109/TAC.1981.1102742
  20. S.V. Emelianov, Variable Structure Control Systems, Naulo, Moscow, 1967 (in Russian).
  21. J.Y. Hung, W. Gao, J.C. Hung, Variable structure control: a survey, IEEE Trans. Ind. Electron. 40 (1) (1993) 2-22. https://doi.org/10.1109/41.184817
  22. H. Shareef, A.A. Ibrahim, A.H. Mutlag, Lightning search algorithm, Appl. Soft Comput. 36 (1) (2015) 315-333. https://doi.org/10.1016/j.asoc.2015.07.028
  23. G.C. Onwubolu, B.V. Babu, New Optimization Techniques in Engineering, Springer, 2013.
  24. F. Reisch, Reactor kinetics equations applied to the start-up phase of a ringhals PWR, e-news Issue, Eur. Nucl. Soc. 14 (2006).
  25. A. Abouelsoud, H. Abdelfattah, M. Metwally, M. Nasr, Stabilization of nuclear reactor kinetics with neturon and reactivity constraints, Mediterr. J. Meas. Control 6 (3) (2010) 82-88.
  26. M. Shafiullah, M.J. Rana, M.S. Alam, M.A. Abido, Online tuning of power system stabilizer employing genetic programming for stability enhancement, J. Electr. Syst. Inf. Technol. 5 (3) (2018) 287-299. https://doi.org/10.1016/j.jesit.2018.03.007
  27. C.H. Yang, Y.H. Cheng, L.Y. Chuang, H.W. Chang, Confronting two-pair primer design for enzyme-free SNP genotyping based on a genetic algorithm, BMC Bioinf. 11 (2010) 1-11. https://doi.org/10.1186/1471-2105-11-1
  28. A. Dwivedi, G. Ray, A.K. Sharma, Genetic algorithm based decentralized PI type controller: load frequency control, J. Inst. Eng.: Ser. Bibliogr. 97 (4) (2016) 509-515.

Cited by

  1. STATE‐OBSERVER based IDD controller for concurrent FREQUENCY‐VOLTAGE control of a hybrid power system with electric vehicle uncertainties vol.31, pp.11, 2020, https://doi.org/10.1002/2050-7038.13083