DOI QR코드

DOI QR Code

Reactor core analysis through the SP3-ACMFD approach. Part I: Static solution

  • Mirzaee, Morteza Khosravi (Faculty of Engineering, Shahid Beheshti University) ;
  • Zolfaghari, A. (Faculty of Engineering, Shahid Beheshti University) ;
  • Minuchehr, A. (Faculty of Engineering, Shahid Beheshti University)
  • Received : 2018.12.24
  • Accepted : 2019.07.24
  • Published : 2020.02.25

Abstract

The present work proposes a solution to the static Boltzmann transport equation approximated by the simplified P3 (SP3) on angular, and the analytic coarse mesh finite difference (ACMFD) for spatial variables. Multi-group SP3-ACMFD equations in 3D rectangular geometry are solved using the GMRES solution technique. As the core time dependent analysis necessitates the solution of an eigenvalue problem for an initial condition, this work is hence devoted to development and verification of the proposed static SP3-ACMFD solver. A 3D multi-group static diffusion solver is also developed as a byproduct of this work to assess the improvement achieved using the SP3 technique. Static results are then compared against transport benchmarks to assess the proximity of SP3-ACMFD solutions to their full transport peers. Results prove that the approach can be considered as an acceptable interim approximation with outputs superior to the diffusion method, close to the transport results, and with the computational costs less than the full transport approach. The work would be further generalized to time dependent solutions in Part II.

Keywords

References

  1. S.A. Thompson, Advanced Reactor Physics Methods for Heterogeneous Reactor Cores, The pennsylvania state university college of engineering, 2014.
  2. A. Henry, Nuclear-Reactor Analysis, second ed., MIT Press, 1980.
  3. A. Hebert, Mixed-dual implementations of the simplified Pn method, Ann. Nucl. Energy 37 (2010) 498-511. https://doi.org/10.1016/j.anucene.2010.01.006
  4. P. Kotiluoto, Adaptive Tree Multigrids and Simplified Spherical Harmonics Approximation in Deterministic Neutral and Charged Particle Transport, VTT Publications, 2007.
  5. G. Longoni, A. Haghighat, The even-parity simplified SN equations applied to a MOX fuel assembly benchmark problem on distributed memory environments. PHYSOR 2004-the physics of fuel cycles and advanced nuclear systems, Global Developments (2004) 25-29.
  6. C. Beckert, U. Grundmann, Development and verification of a nodal approach for solving the multigroup S$P_3$ equations, Ann. Nucl. Energy 35 (2008) 75-86. https://doi.org/10.1016/j.anucene.2007.05.014
  7. M.H.J. Bahabadi, A. Pazirandeh, M. Athari, New analytic function expansion nodal (AFEN) method for solving multigroup neutron simplified $P_3$ (S$P_3$) equations, Ann. Nucl. Energy 77 (2015) 148-160. https://doi.org/10.1016/j.anucene.2014.11.012
  8. A. Vidal-Ferrandiz, S. Gonzalez-Pintor, D. Ginestar, C. Demaziere, G. Verdu, Pin-wise homogenization for $SP_N$ neutron transport approximation using the finite element method, J. Comput. Appl. Math. 330 (2017) 806-821. https://doi.org/10.1016/j.cam.2017.06.023
  9. Y.-A. Chao, A new and rigorous $SP_N$ theoryePart III: a succinct summary of the $GSP_N$ theory, the $P_3$ equivalent and implementation issues, Ann. Nucl. Energy 119 (2018) 310-321. https://doi.org/10.1016/j.anucene.2018.04.029
  10. Y.-A. Chao, A new and rigorous $SP_N$ theory for piecewise homogeneous regions, Ann. Nucl. Energy 96 (2016) 112-125. https://doi.org/10.1016/j.anucene.2016.06.010
  11. Y.-A. Chao, A new and rigorous $SP_N$ theorye Part II: generalization to $GSP_N$, Ann. Nucl. Energy 110 (2017) 1176-1196. https://doi.org/10.1016/j.anucene.2017.08.020
  12. A. Cherezov, R. Sanchez, H.G. Joo, A reduced-basis element method for pin-bypin reactor core calculations in diffusion and $SP_3$ approximations, Ann. Nucl. Energy 116 (2018) 195-209. https://doi.org/10.1016/j.anucene.2018.02.013
  13. C. Zhang, G. Chen, Fast solution of neutron transport $SP_3$ equation by reduced basis finite element method, Ann. Nucl. Energy 120 (2018) 707-714. https://doi.org/10.1016/j.anucene.2018.06.042
  14. T.-Y. Lin, Y.-W.H. Liu, A next generation method for light water reactor core analysis by using global/local iteration method with $SP_3$, Ann. Nucl. Energy 118 (2018) 49-60. https://doi.org/10.1016/j.anucene.2018.03.030
  15. W. Yang, H. Wu, Y. Li, L. Cao, S. Wang, Acceleration of the exponential function expansion nodal $SP_3$ method by multi-group GMRES algorithm for PWR pinby-pin calculation, Ann. Nucl. Energy 120 (2018) 869-879. https://doi.org/10.1016/j.anucene.2018.07.005
  16. T. Downar, D. Lee, Y. Xu, T. Kozlowski, User and Theory Manual for the PARCS Neutronics Core Simulator (U.S. NRC Core Neutronics Simulator), School of Nuclear Engineering Purdue University, 2004.
  17. M. Tatsumi, A. Yamamoto, Advanced PWR core calculation based on multigroup nodal-transport method in three-dimensional pin-by-pin geometry, J. Nucl. Sci. Technol. 40 (2003) 376-387. https://doi.org/10.3327/jnst.40.376
  18. T. Bahadir, S. Lindahl, S.P. Palmtag, SIMULATE-4 multi-group nodal code with microscopic depletion model, in: American Nuclear Society Topical Meeting in Mathematics and Computations, Avignon, France, 2005.
  19. Y.A. Chao, A Theoretical Analysis of the Coarse Mesh Finite Fifference Representation in Advanced Nodal Methods. Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Senda Ed., 1999, pp. 117-126. Madrid.
  20. J.M. Aragones, C. Ahnert, N. Garcia-Herranz, The analytic coarse mesh finite difference method for multigroup and multidimensional diffusion calculations, Nucl. Sci. Eng. 157 (2007) 1-15.
  21. J.-A. Lozano, N. Garcia-Herranz, C. Ahnert, J.-M. Aragones, The analytic nodal diffusion solver ANDES in multigroups for 3D rectangular geometry: development and performance analysis, Ann. Nucl. Energy 35 (2008) 2365-2374. https://doi.org/10.1016/j.anucene.2008.07.013
  22. M.U.s. Manual, Version 2.7. 0, Los Alamos National Laboratory, Los Alamos (NM), 2011.
  23. M. Capilla, D. Ginestar, G. Verdu, Applications of the multidimensional $P_L$ equations to complex fuel assembly problems, Ann. Nucl. Energy 36 (2009) 1624-1634. https://doi.org/10.1016/j.anucene.2009.08.008
  24. OECD/NEA, Benchmark on Deterministic Transport Calculations without Spatial Homogenisation: a 2-D/3-D MOX Fuel Assembly Benchmark. NEA/NSA/DOC(2003)16, 2003.
  25. Argonne Code Center, ANL Benchmark Book-Report ANL-7416, Argonne National Laboratory, Argonne, IL, 1977.
  26. B. Cho, J.H. Won, N.Z. Cho, Analytic function expansion nodal(AFEN) method extended to multigroup simplified $P_3$ (SP3) equations via partial current moment transformation, Trans. Am. Nucl. Soc. 103 (2011) 714-717.
  27. T. Takeda, H. Ikeda, 3-D neutron transport benchmarks, J. Nucl. Sci. Technol. 28 (1991) 656-669. https://doi.org/10.1080/18811248.1991.9731408
  28. E.H. Ryu, H.G. Joo, Finite element method solution of the simplified $P_3$ equations for general geometry applications, Ann. Nucl. Energy 56 (2013) 194-207. https://doi.org/10.1016/j.anucene.2013.01.008