References
- S.A. Thompson, Advanced Reactor Physics Methods for Heterogeneous Reactor Cores, The pennsylvania state university college of engineering, 2014.
- A. Henry, Nuclear-Reactor Analysis, second ed., MIT Press, 1980.
- A. Hebert, Mixed-dual implementations of the simplified Pn method, Ann. Nucl. Energy 37 (2010) 498-511. https://doi.org/10.1016/j.anucene.2010.01.006
- P. Kotiluoto, Adaptive Tree Multigrids and Simplified Spherical Harmonics Approximation in Deterministic Neutral and Charged Particle Transport, VTT Publications, 2007.
- G. Longoni, A. Haghighat, The even-parity simplified SN equations applied to a MOX fuel assembly benchmark problem on distributed memory environments. PHYSOR 2004-the physics of fuel cycles and advanced nuclear systems, Global Developments (2004) 25-29.
-
C. Beckert, U. Grundmann, Development and verification of a nodal approach for solving the multigroup S
$P_3$ equations, Ann. Nucl. Energy 35 (2008) 75-86. https://doi.org/10.1016/j.anucene.2007.05.014 -
M.H.J. Bahabadi, A. Pazirandeh, M. Athari, New analytic function expansion nodal (AFEN) method for solving multigroup neutron simplified
$P_3$ (S$P_3$ ) equations, Ann. Nucl. Energy 77 (2015) 148-160. https://doi.org/10.1016/j.anucene.2014.11.012 -
A. Vidal-Ferrandiz, S. Gonzalez-Pintor, D. Ginestar, C. Demaziere, G. Verdu, Pin-wise homogenization for
$SP_N$ neutron transport approximation using the finite element method, J. Comput. Appl. Math. 330 (2017) 806-821. https://doi.org/10.1016/j.cam.2017.06.023 -
Y.-A. Chao, A new and rigorous
$SP_N$ theoryePart III: a succinct summary of the$GSP_N$ theory, the$P_3$ equivalent and implementation issues, Ann. Nucl. Energy 119 (2018) 310-321. https://doi.org/10.1016/j.anucene.2018.04.029 -
Y.-A. Chao, A new and rigorous
$SP_N$ theory for piecewise homogeneous regions, Ann. Nucl. Energy 96 (2016) 112-125. https://doi.org/10.1016/j.anucene.2016.06.010 -
Y.-A. Chao, A new and rigorous
$SP_N$ theorye Part II: generalization to$GSP_N$ , Ann. Nucl. Energy 110 (2017) 1176-1196. https://doi.org/10.1016/j.anucene.2017.08.020 -
A. Cherezov, R. Sanchez, H.G. Joo, A reduced-basis element method for pin-bypin reactor core calculations in diffusion and
$SP_3$ approximations, Ann. Nucl. Energy 116 (2018) 195-209. https://doi.org/10.1016/j.anucene.2018.02.013 -
C. Zhang, G. Chen, Fast solution of neutron transport
$SP_3$ equation by reduced basis finite element method, Ann. Nucl. Energy 120 (2018) 707-714. https://doi.org/10.1016/j.anucene.2018.06.042 -
T.-Y. Lin, Y.-W.H. Liu, A next generation method for light water reactor core analysis by using global/local iteration method with
$SP_3$ , Ann. Nucl. Energy 118 (2018) 49-60. https://doi.org/10.1016/j.anucene.2018.03.030 -
W. Yang, H. Wu, Y. Li, L. Cao, S. Wang, Acceleration of the exponential function expansion nodal
$SP_3$ method by multi-group GMRES algorithm for PWR pinby-pin calculation, Ann. Nucl. Energy 120 (2018) 869-879. https://doi.org/10.1016/j.anucene.2018.07.005 - T. Downar, D. Lee, Y. Xu, T. Kozlowski, User and Theory Manual for the PARCS Neutronics Core Simulator (U.S. NRC Core Neutronics Simulator), School of Nuclear Engineering Purdue University, 2004.
- M. Tatsumi, A. Yamamoto, Advanced PWR core calculation based on multigroup nodal-transport method in three-dimensional pin-by-pin geometry, J. Nucl. Sci. Technol. 40 (2003) 376-387. https://doi.org/10.3327/jnst.40.376
- T. Bahadir, S. Lindahl, S.P. Palmtag, SIMULATE-4 multi-group nodal code with microscopic depletion model, in: American Nuclear Society Topical Meeting in Mathematics and Computations, Avignon, France, 2005.
- Y.A. Chao, A Theoretical Analysis of the Coarse Mesh Finite Fifference Representation in Advanced Nodal Methods. Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Senda Ed., 1999, pp. 117-126. Madrid.
- J.M. Aragones, C. Ahnert, N. Garcia-Herranz, The analytic coarse mesh finite difference method for multigroup and multidimensional diffusion calculations, Nucl. Sci. Eng. 157 (2007) 1-15.
- J.-A. Lozano, N. Garcia-Herranz, C. Ahnert, J.-M. Aragones, The analytic nodal diffusion solver ANDES in multigroups for 3D rectangular geometry: development and performance analysis, Ann. Nucl. Energy 35 (2008) 2365-2374. https://doi.org/10.1016/j.anucene.2008.07.013
- M.U.s. Manual, Version 2.7. 0, Los Alamos National Laboratory, Los Alamos (NM), 2011.
-
M. Capilla, D. Ginestar, G. Verdu, Applications of the multidimensional
$P_L$ equations to complex fuel assembly problems, Ann. Nucl. Energy 36 (2009) 1624-1634. https://doi.org/10.1016/j.anucene.2009.08.008 - OECD/NEA, Benchmark on Deterministic Transport Calculations without Spatial Homogenisation: a 2-D/3-D MOX Fuel Assembly Benchmark. NEA/NSA/DOC(2003)16, 2003.
- Argonne Code Center, ANL Benchmark Book-Report ANL-7416, Argonne National Laboratory, Argonne, IL, 1977.
-
B. Cho, J.H. Won, N.Z. Cho, Analytic function expansion nodal(AFEN) method extended to multigroup simplified
$P_3$ (SP3) equations via partial current moment transformation, Trans. Am. Nucl. Soc. 103 (2011) 714-717. - T. Takeda, H. Ikeda, 3-D neutron transport benchmarks, J. Nucl. Sci. Technol. 28 (1991) 656-669. https://doi.org/10.1080/18811248.1991.9731408
-
E.H. Ryu, H.G. Joo, Finite element method solution of the simplified
$P_3$ equations for general geometry applications, Ann. Nucl. Energy 56 (2013) 194-207. https://doi.org/10.1016/j.anucene.2013.01.008