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a b s t r a c t

The present work proposes a solution to the static Boltzmann transport equation approximated by the
simplified P3 (SP3) on angular, and the analytic coarse mesh finite difference (ACMFD) for spatial vari-
ables. Multi-group SP3-ACMFD equations in 3D rectangular geometry are solved using the GMRES so-
lution technique. As the core time dependent analysis necessitates the solution of an eigenvalue problem
for an initial condition, this work is hence devoted to development and verification of the proposed static
SP3-ACMFD solver. A 3D multi-group static diffusion solver is also developed as a byproduct of this work
to assess the improvement achieved using the SP3 technique. Static results are then compared against
transport benchmarks to assess the proximity of SP3-ACMFD solutions to their full transport peers. Re-
sults prove that the approach can be considered as an acceptable interim approximation with outputs
superior to the diffusion method, close to the transport results, and with the computational costs less
than the full transport approach. The work would be further generalized to time dependent solutions in
Part II.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Accuracy of the neutron diffusion theory is not satisfactory for
design and analysis of reactors with complex fuel assemblies e.g.
MOX fueled LWRs [1]. Taking into account the rich phase space of
transport equation, a time dependent analysis would be too
expensive in the sense of computational cost. Among deterministic
methods, discrete ordinates (SN) or expansion through spherical
harmonics polynomials (PN) are the most favorable techniques to
solve the transport equation. Although theoretical investigations
predict a good convergence for large enough values of N, in practice
it is not quite economic for core calculation [2]. To reduce the
computational burden while saving the desired accuracy as much
as possible, a number of efforts have focused on interim approaches
which resulted in Simplified SN (SSN) as well as Simplified PN (SPN) for
transport solutions [3e5]. These methods accompany the good
precision of semi-analytic expansions alongside reducing the costs
of computation through some acceptable simplifications for
angular variables. The platform is therefore suitable for a time
dependent analysis.
sravi Mirzaee), A-zolfaghari@
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by Elsevier Korea LLC. This is an
Based on analytic investigations [6], the SPN approximation al-
locates less variables compared to its PN counterpart. As an
instance, a 3D even parity P3 analysis requires six moments per
node while the same analysis in SP3 becomes possible with only
two moments per node suggesting an incredible saving.

In recent years many researchers have benefited SP3 equations
for complicated cores. Bahabadi et al. [7] proposed a new analytic
function expansion nodal (AFEN) method for solving SP3 static
equations which uses analytic basis functions to expand 3D flux. So,
it might be encountered as a novel expansion nodal method. More
recently, the SPN coupled with the finite element method was used
for pinwise homogenization with less computational cost [8].

A rather quick scan over the works carried out on the SP3
approach decisively indicates a fast growth of interests in this
plausible approximation. For instances, Chao [9] continues efforts
on his proposed generalized SPN (GSPN) equations already devel-
oped for a generic case of multi-group anisotropic neutron source
with improved boundary conditions [10,11]. Though Chao derived
some new and complicated interface and boundary conditions plus
more differential equations to improve the accuracy of original SPN
equations, the work is not yet supported by detailed numerical
experiments to prove the predicted error reduction in applied
problems. In another attempt, Cherezov et al. [12] focused on the
diffusion and SP3 equations for static 2D reactor core calculations
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using the reduced order element method. At the same time, Zhang
and Chen [13] tried to solve the SP3 equations using the reduced
basis finite element method. Meanwhile, the coupled diffusion/SP3
method was implemented in a so called GLIM framework using the
Hybrid Nodal Green's FunctionMethod (HNGFM) [14]. Finally, Yang
et al. [15] experienced the accelerated pin-by-pin calculations using
the exponential function expansion nodal SP3 solved by the GMRES
technique applicable for PWRs.

At the time being, one can list many codes for static SP3 solution
but fewwith transient ability, topped by PARCS [16] and DYN3D [6].
Both codes benefit the nodal expansion method (NEM) for the
spatial discretization. The code SCOPE2 is equipped with a semi-
analytic nodal method for PWR core analysis [17]. We can also
point to the SIMULATE-4 [18] wherein a variant of semi-analytic 2D
SP3-nodal formulation is coupled with an axial homogenization
model to carry out 3D core calculations.

Analytic coarse mesh finite difference (ACMFD) method was
first introduced by Chao [19] to derive an explicit analytic expres-
sions for the two-group effective diffusion coefficients in both 3D
Cartesian and hexagonal geometries. Later, Aragon�es et al. [20]
expanded the idea to multigroup case by transforming the phys-
ical nodal equations to the so-called mathematical modal space
followed by solving energy decoupled equations there. The solu-
tions are transformed back into the nodal space resulting in a
coupled system of equations with group fluxes as unknowns.

In this paper we propose the extention of using ACMFD meth-
odology for the solution of static SP3 equations. A solver called
SIMANOD is therefore developed based on the SP3-ACMFD tech-
nique to carry out a number of static criticality calculations. To
demonstrate the superiority of the adopted SP3 technique over the
diffusion outcome, we have also developed a difusion solver
(DIFANOD) based on the ACMFD method. This way one will be able
to keep the spatial approximation fixed for both codes and focus on
the angular improvements achieved by the SP3 kernel. Fianlly, to
verify the code against transport results, a number of benchmarks
are examined.

Here in Part I, static SP3 equations in three dimensions are dis-
cussed, and satisfactory benchmarking which justify the superior-
ity of new platform over the diffusion model is also proposed. This
way, necessary initial conditions for transient problems can be
generated through the solution of static eigenvalue equations
solver. Then in Part II, the idea is generalized to time dependent
equations where the numerical solution of transient problems as
well as the accuracy achieved over diffusion peers are investigated
there.

The rest of this article is organized as follows. In section 2, we
propose the coupled SP3-ACMFD approach adopted for reactor core
static analysis. Section 3 is devoted to benchmark problems sup-
porting the methodology described earlier. Therein, a number of
reactor cores are studied at the static mode in detail. We finally sum
up the work with a conclusion in section 4.
2. The SP3-ACMFD technique applied for static solutions

The primary idea behind development of the SPN approximation
was to simplify the application of heavily coupled PN equations in
multidimensional space. The appraoch was successful in damping
the number of coupled equations down to Nþ1 in a 3D SPN system
from (Nþ1)2 for a full 3D PN analysis (N 2 odd).
2.1. SP3 equations for angular approximation

Briefly, a SP3 system of equations is presented through the
following coupled system [16],
V:f1g þ Srgf0g ¼ S0g ¼
XG
g0sg

Ssg0gf0g0 þ cg
keff

XG
g0¼1

nSfg0f0g0 ;

2
3
Vf2g þ

1
3
Vf0g þ Strgf1g ¼ 0;

3
5
V:f3g þ

2
5
V:f1g þ Stgf2g ¼ 0;

3
7
Vf2g þ Stgf3g ¼ 0;

(1)

where all parameters have their conventional definitions used in
the transport theory. Next, odd order moments are substituted by
even moments obtained via rearrangement of equations. The result
can be displayed in matrix form as [16].

2
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where

F0 ≡f0 þ 2f2; Srt≡
5
3
St þ 4

3
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1
3Str

; D3≡
3

7St
: (3)

Partial currents can also be introduced as a special combination
of moments of surface fluxes and moments of net currents

j±1 ¼1
4
F0s ±

1
2
J1 �

3
16

f2s; j±3 ¼ 7
16

f2s ±
1
2
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1
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F0s: (4)

where current moments are defined as.

J1 ¼ � D1VF0; J3 ¼ �D3Vf2: (5)

Theoretically, the solution of Eq. (2) determines the scalar flux
(f0) plus related quantities. As typical for all nodal methods, in the
first step Eq. (2) is integrated over the volume of node m and di-
mensions hu ðu ¼ x;y;zÞ.
X
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�!
:

(6)

Establishing a relation between the average nodal surface cur-
rents and the average nodal moments would lead to an eigenvalue
system of equations for which the ACMFD framework is further
invoked to solve the problem.

2.2. ACMFD method for spatial descretization

As quite conventional in nodal methods, three transverse in-
tegrations over the SP3 equations have to be performed to generate
three one dimensional equations with transverse leakage terms.
The result would be three transverse integrated equations of the
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form
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where u ¼ x, y, or z and,

L1ðuÞ¼
1

hv hw
∬ � D1

�
v2F0

vv2
þ v2F0

vw2

�
dv dw ; v;w

¼ x; y; z ðvswsuÞ: (8)

A similar equation can also be derived for L3ðuÞ in Eq. (7) by
substituting proper parameters. Eq. (7) can be expressed in a
condensed form as
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du2
� A

!
j4ðuÞ〉 ¼ D�1jLðuÞ〉: (9)

where Du is a diagonal matrix containing Dig, j4ðuÞ〉 ¼ ½F0;g f2;g �T
and A is defined by

A ¼

2
664A

11 A12

A21 A22

3
775
2G�2G

; Aij ¼
h
aijgg0
i
G�G

;

a11gg0 ¼
1

D1;g

8>><
>>:

Ss;g0/g þ cgnSf ;g0

.
keff gsg0

�Sr;g þ cgnSf ;g

.
keff g ¼ g0

;

a12gg0 ¼
�2
D1;g

8>><
>>:

Ss;g0/g þ cgnSf ;g0

.
keff gsg0

�Sr;g þ cgnSf ;g

.
keff g ¼ g0

;

a21gg0 ¼
�2

3D3;g

8>><
>>:

Ss;g0/g þ cgnSf ;g0

.
keff gsg0

1:5
�
Sr;g � cgnSf ;g

.
keff
�

g ¼ g0
;

a22gg0 ¼
4

3D3;g

8>><
>>:

Ss;g0/g þ cgnSf ;g0

.
keff gsg0

�3Srt;g
�
4þ cgnSf ;g

.
keff g ¼ g0

:

(10)

In this paper the group transverse leakage for the typical nodem
is approximated by a quadratic polynomial as

Li;gm ðuÞ ¼ ci;g0;m þ u ci;g1;m þ
 
u2 � h2u;m

12

!
ci;g2;m ;

i ¼ 1;3; g ¼ 1;2; :::;G:
(11)

with hu;m being the length of node m along the u direction. To
find the expansion coefficients (ci;gn;m; n ¼ 0, 1, 2), a curve fitting
process is performed which establishes a relation among ci;gn;m and
the amounts of average transverse leakages over node m and its
two adjacents i.e. m-1 and mþ1 in the same direction (currently
supposed to be known). Therefore, one can write
L
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(12)

where Lu for nodes m-1, m and mþ1 are obtained through a
straightforward 1D integration over the volume of each node
leading to an algebraic summation of average transverse currents
over the node boarders. As a result, the unknown jLðuÞ〉 in Eq. (9)
can be presented as a function of transverse currents which is
assumed to be known thanks to the previous iterations during the
iterative solution or an implicit approach, as an alternate solution
strategy. Therefore, jLðuÞ〉 in Eq. (9) is now supposed to be known
and the dependency of lateral directions was removed.

Despite achievments in spatial simplicities, Eq. (9) still suffers
from extensive group and moment couplings which must be
resolved to enjoy the ACMFD with analytic solution. By benefiting
the diagonalization procedure, the 2 � G system of coupled equa-
tions could be reduced into a set of 2 � G uncoupled equations. To
this end, as performed by Lozano et al. [21] for the diffusion case,
we can define some conversion matrices to shift over the so-called
modal space wherein the equations could get decoupled. Using the
matrix algebra we may have

Ajvmi¼ lmjvmi ; m¼1; :::;2G: R�1 ¼ ½
� jv1i jv2i … jv2Gi�; RAR�1 ¼ l; (13)

where jvmi represents the eigenvector of A, and l is a diagonal
matrix for eigenvalues of A. Nodal vectors could be transferred into
the modal spaces through the conversion matrices as

jjðuÞ〉¼Rj4ðuÞ〉; j[ðuÞ〉¼RD�1jLðuÞ〉 (14)

and inverse transforms could be used for modal to nodal shift.
Using transforms given by (14), Eq. (9) can be represented in the
modal space as

d2jmðuÞ
du2

�mmjmðuÞ ¼ [mðuÞ; m ¼ 1; ::;M;

u ¼ x; y; z (15)

with the following solution:
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jmðuÞ¼ PmðuÞ þ Am;ueþ
ffiffiffiffiffi
mm

p
u þ Bm;ue�

ffiffiffiffiffi
mm

p
u (16)

where PmðuÞ is the particular solution corresponding to the specific
force term [mðuÞ at the rhs of Eq. (15), and Am,u and Bm,u are two
constants obtained with the help of boundary conditions. The
general modal solution derived in Eq. (16) could be specialized for a
particular 1D node expanded from u¼-h/2 to u¼þh/2. In this re-
gard, some mathematical manipulation ends to a relation among
the mean modal flux over the node, modal currents and flux mo-
ments on the node borders as

jm

�
±
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2

�
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�
±
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2
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mm

p
hu
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mm

p
huÞ; xjm;u≡

tanhð ffiffiffiffiffiffiffi
mm

p
hu=2Þffiffiffiffiffiffiffi

mm
p

hu=2
(18)

are defined for simplicity. Now, noting Eq. (9), the decoupled
equations stated by Eq. (17) are transferred back into the nodal
space to have a system of coupled equations there. The coupled
nodal system can now be represented as
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and

Gf
u ¼R�1Xf

uR; Gj
u ¼ R�1Xj

uR (21)

are two coefficient matrices wherein X denote diagonal matrices
for xs. Imposing continuity conditions for the moments and cur-
rents at the interfaces of samples nodes m-1 and m establishes a
relation between

���Jmu

u;Li and j4ui for the two nodes as
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(22)

Finally, to characterize the equations, two external boundary
conditions must be further incorporated. For the node M subjected
to a reflective surface the current

���JMu i damps to zero at the
boundary, and for the node M’ with free surface, the net partial
incoming current in Eq. (4) vanishes by force. This is performed
through setting
����JM0
u

�
±
hu;FS
2

��
¼±B

����4M0
u

�
±
hu;FS
2

��
; B ¼ 1

8

2
4 4 �3
�1 7

3
5; FS

: Free Surface:

(23)

for all energy groups of nodeM’where “þ” goes for the right free
surface while “e“ comes with the left free surface.

Finally, substituting the terms of currents stated by Eq. (22) for
different Jmu±

i;g;u terms into the nodal balance Eq. (6) plus incorpo-

rating external boundary conditions, renders a multigroup eigen-
value system of the form Mj4〉 ¼ 1

keff
Fj4〉 for the static state. The

commonly invoked power iteration can in general solve the prob-
lem straightforwardly with transverse leakage updating included.
Fig. 1 presents a calculation flow for the solution of equations
described earlier.
3. Numerical results

Based on the theory, a code named SIMANOD is developed in
F90 to perform 3D multigroup static solutions benefiting the SP3-
ACMFD scheme. The engine was also boosted by the Math Kernel
Library (MKL). The powerful GMRES solver is invoked to solve the
final linear system of the equations.

Four benchmark problems are chosen for the evaluation of static
results. According to the theory, we expect superior outcome
compared to the diffusion predition especially in problems with
high heterogenuity. To prove it, we have further developed a code
called DIFANOD based on the ACMFD but for the difussion analysis.
On the other hand, the theory states that the SP3 should result in
inferoir results than the transport solutions of course with lower
costs. For complex problems however, the privilege balances to-
ward the interim approaches (SP3 included) as the solution costs
must not exceed a logical threshold. Compartive outcomes could be
traced in the supplied static benchmarks. The convergence
criteria for keff and the local flux are 10�7 and 10�4 respectively for
all tests.
3.1. Test Case I: a small homogeneous cube

As the first, we consider a simple homogeneous cube of 10 cm in
each side. The cube dimension is small enough to observe cosi-
derable anisotropy of the neutron flux as a result of high boundary
to volume ratio. Geometry of the problem is demonstrated in Fig. 2
wherein a few boundary nodes are also specified. Also, one group
cross sections are (St, nSf, Ss) ¼ (1, 0.88, 0.25) cm�1. Cubic nodes of
unit volume fill the cube for both SIMANOD and DIFANOD.

As the reference, MCNPX [22] results for the keff is reported with
1 pcm standard deviation, and the maximum relative standard
deviation for the fluxes is 0.0006.

In Eq. (24) we have introduced the Relative Power Density (RPD)
for node i which is applicable for the comparison of power dis-
tibution. In fact, RPDi is the ratio of power density in node i to mean
power density of the core.

RPDi ¼

PG
g¼1

Si
f ;gf

i
0;g PN

i¼1
Vi
PG
g¼1

Si
f ;gf

i
0;g

!, PN
i¼1

liV i

!;



Fig. 1. A calculation flow diagram for the static SP3-ACMFD approach.

Fig. 2. Geometry of the simple homogeneous cube (Test Case I).

Table 1
Eigenvalue search results for the simple homogeneous cube (Test Case I).

CODE keff εk
a [pcm] εave

b [%] εmax
b [%]

MCNPX (ref.) 1.06938 0 0 0
SIMANOD 1.06981 þ43 0.22 1.99
DIFANOD 1.06395 �543 1.76 4.62

a
εk is the error in effective multiplication factor in comparison with the reference

value (pcm).
b
εave and εmax are average and maximum of the absolute percentage of relative

errors in nodal power densities.

Fig. 3. RPD results for the boundary nodes shown in Fig. 2 (Test Case I).
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li ¼

8><
>:

1 ; Si
f ;gs0

0 ; Si
f ;g ¼ 0

: (24)

Table 1 demonstarates that switching from DIFANOD to SIMA-
NOD i.e. diffusion to SP3 improves the error in the effective multi-
plication factor from �543 to þ43 pcm. Also in Table 1, the
improvement is quite sensible (nearly 8 times) in the average of
absolute errors in RPD over the whole core. By moving from the
cube center to the wall, the flux anisotropy is intensified and
consequently the need for finer angular resolution is much felt. To
understand the maximum improvement obtained by SIMANOD
against DIFANOD, the RPD is monitored over the boundary nodes
depicted in Fig. 2. As expected, corner nodes pose the maximum
error due to the high flux gradient there. Via Fig. 3, one can confirm
that the approach adopted in SIMANOD nearly halves the absolute
error of this node compared to that of DIFANOD.

3.2. Test Case II: a 2D LWR with UOX-MOX fuels (C5G2)

To illustrate the capabilities of the developed codes in analyzing
the MOX fuel cores, this two-dimensional two-group problem is
studied in detail. Capilla et al. [23] introduced the problem as a
simplified version of the famous C5G7 core originally proposed in
Ref. [24]. The core configuration is depicted in Fig. 4 and the two-
group constants of the problem can be found in Ref. [23]. Each
assembly must be divided into at least 17 � 17 rectangles with the
minimum of 1156 nodes in the active core. Nodes of variable size
however could be employed for the surrounding homogeneous
reflector.

To assess the proposed approach over this highly heterogeneous
benchmark, the minimum number of required nodes are used for
discretizing the core. Also, to improve the resolution for the
thermal group, nodes of the same size are tiled over the water
reflector. As a result the problem comprises 2601 nodes in sum.
Reference solution of the benchmark is generated by MCNPX to
facilitate a detail comparison for pin powers as well as the eigen-
value. Again, MCNPX results for the keff is reported with 1 pcm
standard deviation, and the maximum relative standard deviations
for pinwise fluxes are 0.0006 and 0.0008 for the fast and thermal
energy groups, respectively. Eigenvalue search results plus calcu-
lated errors are reported in Table 2. Moreover, to see the
improvement obtained over the diffusion approximation results by
the DIFANOD are also reported there. Absolute values of pin power
distribution error over the assemblies are further compared in
Fig. 5.

Table 2 displays a relatively low-cost switch from the commonly
invoked diffusion method to the SP3 approach which deserves a
reduction in the error of keff from 90 to 31 pcm (nearly 3 times
lower). The gain in pin powers are also brilliant. The maximum
error of pin powers is reduced by a factor of 5 while in average, the



Fig. 4. Geometry of the C5G2 benchmark (Test Case II).

Table 2
Eigenvalue search results for the C5G2 benchmark (Test Case II).

Code keff εk[pcm] εave[%] εmax[%]

MCNPX 0.97050 0 0 0
SIMANOD 0.97081 þ31 0.13 0.56
DIFANOD 0.97140 þ90 0.49 2.95

Fig. 5. Pin power errors in the C5G2 benchmark using (A) DIFANOD, and (B) SIMANOD
(Test Case II).

Fig. 6. Relative power of the assemblies for the modified IAEA-3D problem (Test Case
III).
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errors are at least dropped by a factor of 3. The map of pin power
errors are further illustrated in Fig. 5 where as demonstrated,
maximum errors are appeared near the borders.
Table 4
Eigenvalue search results for Takeda's small fast breeder reactor benchmark (Test
Case IV).

Code Case keff εk[pcm] εave
a [%] εmax

a [%]
3.3. Test Case III: the modified IAEA-3D problem

As a 3D test, the simplified IAEA's PWR is investigated to assess
the performance of SIMANOD under normal operation. The prob-
lem was first introduced by H�ebert [3] who modified the original
core proposed in Ref. [25]. The core specification and the two group
constants are the same as those reported in Ref. [3].

Cho et al. [26] modeled the problem using the code DANTSYS
with S16 approximation which is taken as reference. For our pur-
pose, we axially subdivided each assembly into 19 nodes
(1 � 1 � 19) to obtain the results. The multiplication factor and the
relative powers of the assemblies are compared against the refer-
ence results in Table 3 and Fig. 6 respectively. Again, a substantial
improvement comes along the expectations when shifting over the
SP3 equations. As seen in Table 3, the eigenvalue error comes down
to 2 pcm from 48 pcm, and both εave and εmax experience an
improvement by a factor of nearly four. Note that the power errors
in Table 3 are defined over assemblies. Meanwhile, Bahabadi et al.
[7] have supposed 76 (2 � 2 � 19) nodes per assembly for a SP3-
AFEN analysis using their MGANSP3 code. Results are very close to
Table 3
Eigenvalue search results for the modified IAEA-3D problem (Test Case III).

Method keff εk εave εmax

DANTSYS (S16) 1.02956 e e e

SIMANOD 1.02958 2 0.19 0.68
DIFANOD 1.02908 48 0.72 2.91
those we obtained but in comparison, the absolute error in keff and
the maximum error in relative powers decrease by 14 pcm and
0.77%, respectively.
3.4. Test Case IV: Takeda's small fast breeder reactor

As the last problem, a small fast breeder reactor (FBR-SQ) is
chosen among famous benchmark problems of Takeda and Ikeda
[27]. Two different cases of the problem are considered: (i) un-
controlled, where control channel is filled by the sodium coolant,
and (ii) partially controlled, where the control rod is half inserted.
The reference results are adopted from thework of Ryu and Joo [28]
who employed the Monte Carlo code McCARD. The size of nodes in
both SIMANOD and DIFANOD, are assumed 5 � 5 � 5 cm3. Table 4
lists a comparison among evaluated parameters. Also, relative po-
wer distributions of cases i and ii are compared in Fig. 7 for core
region. Four group nodal fluxes of the core's fifth layer (from the
top) are depicted in Fig. 8. The flux is normalized such that the
neutron generation rate equals unity over the full core.

Overall, inspection of Table 4 reveals that the error of proposed
method lies in the acceptable range for both conditions, and for the
partially controlled case, the eigenvalue errors are generally more
for uncontrolled state, as expected. The maximum error however
remains unchanged for SIMANOD. It is also observed that the
eigenvalue errors are reduced by an order of magnitude when
switching from SIMANOD to DIFANOD beside a considerable
reduction in the mean values of power errors. The only drawback is
themaximum error of power in uncontrolled casewhich goes up by
0.08%.

Over the detailed comparisons given in Fig. 7, one should note
that the reference values of McCARD have been reported only with
fixed 3 digits after point. Therefore, numerical comparisons made
in Fig. 7 may not be entirely true especially inside the blanket
where the number of reference meaningful digits may be reduced
down to one. That's why we have only reported the maximum
relative error in power for the core region.
McCARD (Ref.)
Ryu and Joo [28]

Uncontrolled 0.97370 0 0 0
Partially controlled 0.95967 0 0 0

SIMANOD Uncontrolled 0.97342 �28 0.09 0.56
Partially controlled 0.95926 �41 0.14 0.56

DIFANOD Uncontrolled 0.96887 �480 0.27 0.48
Partially controlled 0.95409 �558 0.28 0.75

a Errors are considered only in the core region.



Fig. 7. Power distribution for Takeda's small fast breeder reactor benchmark, cases i
and ii (Test Case IV).

Fig. 8. Four-group scalar flux distribution for Takeda's small fast breeder reactor
benchmark, cases i and ii (Test Case IV).
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4. Conclusion

A coupled SP3-ACMFD technique was proposed for reactor core
analysis. The main privilege of the idea is the admissible accuracy
compared to the diffusion approximation while less burden in
comparison with P3 resolution. To validate the idea a code called
SIMANOD was developed for the static analysis of reactors with
rectangular geometry. The approach proved robust for handling
regular multigroup calculations. Simulations confirm that while the
method is generally superior to the diffusion theory (DIFANOD), the
overall accuracy is comparable with full transport approach. Static
analyses suggest that the methodology can hopefully serve as an
efficient platform for a further extension of the work to time
dependent problems; an idea to be probed in Part II.
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