References
- Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., and Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113-131. https://doi.org/10.1016/j.ijpe.2016.08.018
- Alharthi, A., Krotov, V., and Bowman, M. (2017). Addressing barriers to big data. Business Horizons, 60(3), 285-292. https://doi.org/10.1016/j.bushor.2017.01.002
- Al-Qirim, N., Rouibah, K., Serhani, M. A., Tarhini, A., Khalil, A., Maqableh, M., and Gergely, M. (2019). The strategic adoption of big data in organizations. In Managerial perspectives on intelligent big data analytics (pp. 43-54). IGI Global.
- Alshamaila, Y., Papagiannidis, S., and Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi-perspective framework. Journal of Enterprise Information Management, 26(3), 250-275. https://doi.org/10.1108/17410391311325225
- Awa, H., and Ojiabo, O. (2016). A model of adoption determinants of ERP within T-O-E framework. Information Technology & People, 29(4), 901-930. https://doi.org/10.1108/ITP-03-2015-0068
- Baker, J. (2012). The technology-organization-environment framework. In Information systems theory (pp. 231-245). Springer, New York, NY.
- Banerjee, A., and Williams, S. A. (2009). International service outsourcing: Using offshore analytics to identify determinants of value added outsourcing. Strategic Outsourcing: An International Journal, 2(1), 68-79. https://doi.org/10.1108/17538290910935909
- Barney, J. B. (2001). Resource-based theories of competitive advantage: A ten-year retrospective on the resource-based view. Journal of Management, 27(6), 643-650. https://doi.org/10.1177/014920630102700602
- Barton, D., and Court, D. (2012). Making advanced analytics work for you. Harvard Business Review, 90(10), 78-83.
- Bean, R., and Davenport, T. H. (2019). Companies are failing in their efforts to become data-driven. Harvard Business Review, Retrieved from https://hbr.org/2019/02/companies-are-failing-in-their-efforts-to-become-data-driven
- Bose, R. (2009). Advanced analytics: Opportunities and challenges. Industrial Management & Data Systems, 109(2), 155-172. https://doi.org/10.1108/02635570910930073
- Bose, R., and Luo, X. (2011). Integrative framework for assessing firms' potential to undertake Green IT initiatives via virtualization-A theoretical perspective. The Journal of Strategic Information Systems, 20(1), 38-54. https://doi.org/10.1016/j.jsis.2011.01.003
- Bradley, E. H., Curry, L. A., and Devers, K. J. (2007). Qualitative data analysis for health services research: Developing taxonomy, themes, and theory. Health Services Research, 42(4), 1758-1772. https://doi.org/10.1111/j.1475-6773.2006.00684.x
- Braganza, A., Brooks, L., Nepelski, D., Ali, M., and Moro, R. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328-337. https://doi.org/10.1016/j.jbusres.2016.08.006
- Braun, V., and Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
- Buetow, S. (2010). Thematic analysis and its reconceptualization as saliency analysis. Journal of Health Services Research & Policy, 15(2), 123-125. https://doi.org/10.1258/jhsrp.2009.009081
- Caldeira, M. M., and Ward, J. M. (2003). Using resource-based theory to interpret the successful adoption and use of information systems and technology in manufacturing small and medium-sized enterprises. European Journal of Information Systems, 12(2), 127-141. https://doi.org/10.1057/palgrave.ejis.3000454
- Chan, F. T., and Chong, A. Y. L. (2013). Determinants of mobile supply chain management system diffusion: A structural equation analysis of manufacturing firms. International Journal of Production Research, 51(4), 1196-1213. https://doi.org/10.1080/00207543.2012.693961
- Chen, D. Q., Preston, D. S., and Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of Management Information Systems, 32(4), 4-39. https://doi.org/10.1080/07421222.2015.1138364
- Chen, H., Chiang, R. H., and Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
- Chen, L., and Nath, R. (2018). Business analytics maturity of firms: An examination of the relationships between managerial perception of IT, business analytics maturity and success. Information Systems Management, 35(1), 62-77. https://doi.org/10.1080/10580530.2017.1416948
- Chong, A. Y. L., and Chan, F. T. (2012). Structural equation modeling for multi-stage analysis on Radio Frequency Identification(RFID) diffusion in the health care industry. Expert Systems with Applications, 39(10), 8645-8654. https://doi.org/10.1016/j.eswa.2012.01.201
- Chwelos, P., Benbasat, I., and Dexter, A. S. (2001). Empirical test of an EDI adoption model. Information Systems Research, 12(3), 304-321. https://doi.org/10.1287/isre.12.3.304.9708
- Coghlan, T., Diehl, G., Karson, E., Liberatore, M., Luo, W., Nydick, R., ... and Wagner, W. (2010). The current state of analytics in the corporation: The view from industry leaders. International Journal of Business Intelligence Research(IJBIR), 1(2), 1-8. https://doi.org/10.4018/jbir.2010040101
- Cooper, B. L., Watson, H. J., Wixom, B. H., and Goodhue, D. L. (2000). Data warehousing supports corporate strategy at first American corporation. MIS Quarterly, 24(4), 547-567. https://doi.org/10.2307/3250947
- Corte-Real, N., Ruivo, P., and Oliveira, T. (2014). The diffusion stages of business intelligence and analytics (BI&A): A systematic mapping study. Procedia Technology, 16, 172-179. https://doi.org/10.1016/j.protcy.2014.10.080
- Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98.
- Depietro, R., Wiarda, E., and Fleischer, M. (1990). The context for change: Organization, technology, and environment. The Processes of Technological Innovation, 199, 151-175.
- Drumwright, M. E. (1996). Company advertising with a social dimension: The role of noneconomic criteria. Journal of Marketing, 60(4), 71-87. https://doi.org/10.1177/002224299606000407
- Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., and Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource based view and big data culture. British Journal of Management, 30(2), 341-361. https://doi.org/10.1111/1467-8551.12355
- Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., and Roubaud, D. (2017). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting & Social Change, 144, 534-545.
- Dutta, D., and Bose, I. (2015). Managing a big data project: The case of ramco cements limited. International Journal of Production Economics, 165, 293-306. https://doi.org/10.1016/j.ijpe.2014.12.032
- Eisenhardt, K. M., and Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21(10-11), 1105-1121. https://doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
- Erevelles, S., Fukawa, N., and Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904. https://doi.org/10.1016/j.jbusres.2015.07.001
- Flint, D. J., Woodruff, R. B., and Gardial, S. F. (2002). Exploring the phenomenon of customers' desired value change in a business-to-business context. Journal of Marketing, 66(4), 102-117. https://doi.org/10.1509/jmkg.66.4.102.18517
- Frizzo-Barker, J., Chow-White, P. A., Mozafari, M., and Ha, D. (2016). An empirical study of the rise of big data in business scholarship. International Journal of Information Management, 36(3), 403-413. https://doi.org/10.1016/j.ijinfomgt.2016.01.006
- Gandomi, A., and Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
- Gangwar, H. (2018). Understanding the determinants of big data adoption in India: An analysis of the manufacturing and services sectors. Information Resources Management Journal(IRMJ), 31(4), 1-22. https://doi.org/10.4018/IRMJ.2018100101
- Gangwar, H., and Date, H. (2016). Critical factors of cloud computing adoption in organizations: An empirical study. Global Business Review, 17(4), 886-904. https://doi.org/10.1177/0972150916645692
- Ghasemaghaei, M., Ebrahimi, S., and Hassanein, K. (2018). Data analytics competency for improving firm decision making performance. The Journal of Strategic Information Systems, 27(1), 101-113. https://doi.org/10.1016/j.jsis.2017.10.001
- Goode, S., and Stevens, K. (2000). An analysis of the business characteristics of adopters and non adopters of World Wide Web technology. Information Technology & Management, 1(1-2), 129-154. https://doi.org/10.1023/A:1019112722593
- Grossman, R., and Siegel, K. (2014). Organizational models for big data and analytics. Journal of Organization Design, 3(1), 20-25. https://doi.org/10.7146/jod.9799
- Gu, V. C., Cao, Q., and Duan, W. (2012). Unified Modeling Language(UML) IT adoption-A holistic model of organizational capabilities perspective. Decision Support Systems, 54(1), 257-269. https://doi.org/10.1016/j.dss.2012.05.034
- Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., and Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004
- Gupta, M., and George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064. https://doi.org/10.1016/j.im.2016.07.004
- Gutierrez, A., Boukrami, E., and Lumsden, R. (2015). Technological, organizational and environmental factors influencing managers' decision to adopt cloud computing in the UK. Journal of Enterprise Information Management, 28(6), 788-807. https://doi.org/10.1108/JEIM-01-2015-0001
- Hoque, M. R., Ali, M. A., and Mahfuz, M. A. (2015). An empirical investigation on the adoption of E-commerce in Bangladesh. Asia Pacific Journal of Information Systems, 25(1), 1-24. https://doi.org/10.14329/apjis.2015.25.1.001
- Hsu, P. F., Ray, S., and Li-Hsieh, Y. Y. (2014). Examining cloud computing adoption intention, pricing mechanism, and deployment model. International Journal of Information Management, 34(4), 474-488. https://doi.org/10.1016/j.ijinfomgt.2014.04.006
- Jeyaraj, A., Rottman, J. W., and Lacity, M. C. (2006). A review of the predictors, linkages, and biases in IT innovation adoption research. Journal of Information Technology, 21(1), 1-23. https://doi.org/10.1057/palgrave.jit.2000056
- Ka, H. K., and Kim, J. S. (2014). An empirical study on the influencing factors for big data intented adoption: Focusing on the strategic value recognition and TOE framework. Asia Pacific Journal of Information Systems, 24(4), 443-472. https://doi.org/10.14329/apjis.2014.24.4.443
- Kapoor, K. K., Dwivedi, Y. K., and Williams, M. D. (2014). Rogers' innovation adoption attributes: A systematic review and synthesis of existing research. Information Systems Management, 31(1), 74-91. https://doi.org/10.1080/10580530.2014.854103
- Kim, S., and Garrison, G. (2010). Understanding users' behaviors regarding supply chain technology: Determinants impacting the adoption and implementation of RFID technology in South Korea. International Journal of Information Management, 30(5), 388-398. https://doi.org/10.1016/j.ijinfomgt.2010.02.008
- Kiron, D., and Shockley, R. (2011). Creating business value with analytics. MIT Sloan Management Review, 53(1), 57-63.
- Klatt, T., Schlaefke, M., and Moeller, K. (2011). Integrating business analytics into strategic planning for better performance. Journal of Business Strategy, 32(6), 30-39. https://doi.org/10.1108/02756661111180113
- Kuan, K. K., and Chau, P. Y. (2001). A perception-based model for EDI adoption in small businesses using a technology-organization-environment framework. Information & Management, 38(8), 507-521. https://doi.org/10.1016/S0378-7206(01)00073-8
- Kumar, V., and Petersen, J. A. (2005). Using a customer-level marketing strategy to enhance firm performance: A review of theoretical and empirical evidence. Journal of the Academy of Marketing Science, 33(4), 504-519. https://doi.org/10.1177/0092070305275857
- Kwon, O., Lee, N., and Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387-394. https://doi.org/10.1016/j.ijinfomgt.2014.02.002
- Lai, Y., Sun, H., and Ren, J. (2018). Understanding the determinants of big data analytics(BDA) adoption in logistics and supply chain management. International Journal of Logistics Management, 29(2), 676-703. https://doi.org/10.1108/IJLM-06-2017-0153
- Lautenbach, P., Johnston, K., and Adeniran-Ogundipe, T. (2017). Factors influencing business intelligence and analytics usage extent in South African organisations. South African Journal of Business Management, 48(3), 23-33. https://doi.org/10.4102/sajbm.v48i3.33
- Lavalle, S., Lesser, E., Shockley, R., Hopkins, M. S., and Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21-32.
- Lee, J. U., Seo, K. J., and Kim, H. W. (2014). An exploratory study on the cloud computing services: Issues and suggestion for the success. Asia Pacific Journal of Information Systems, 24(4), 473-491. https://doi.org/10.14329/apjis.2014.24.4.473
- Levenburg, N., Magal, S. R., and Kosalge, P. (2006). An exploratory investigation of organizational factors and e business motivations among SMFOEs in the US. Electronic Markets, 16(1), 70-84. https://doi.org/10.1080/10196780500491402
- Liang, H., Saraf, N., Hu, Q., and Xue, Y. (2007). Assimilation of enterprise systems: The effect of institutional pressures and the mediating role of top management. MIS Quarterly, 31(1), 59-87. https://doi.org/10.2307/25148781
- Lim, J. H., Stratopoulos, T. C., and Wirjanto, T. S. (2011). Path dependence of dynamic information technology capability: An empirical investigation. Journal of Management Information Systems, 28(3), 45-84. https://doi.org/10.2753/MIS0742-1222280302
- Lin, H. F., Su, J. Q., and Higgins, A. (2016). How dynamic capabilities affect adoption of management innovations. Journal of Business Research, 69(2), 862-876. https://doi.org/10.1016/j.jbusres.2015.07.004
- Lind, M. R., and Zmud, R. W. (1991). The influence of a convergence in understanding between technology providers and users on information technology innovativeness. Organization Science, 2(2), 195-217. https://doi.org/10.1287/orsc.2.2.195
- Low, C., Chen, Y., and Wu, M. (2011). Understanding the determinants of cloud computing adoption. Industrial Management and Data Systems, 111(7), 1006-1023. https://doi.org/10.1108/02635571111161262
- Mathew, S. K. (2012). Adoption of business intelligence systems in Indian fashion retail. International Journal of Business Information Systems, 9(3), 261-277. https://doi.org/10.1504/IJBIS.2012.045718
- McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., and Barton, D. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68.
- Musawa, M. S., and Wahab, E. (2012). The adoption of electronic data interchange (EDI) technology by Nigerian SMEs: A conceptual framework. Journal of Business Management and Economics, 3(2), 55-68.
- Nam, D., Lee, J., and Lee, H. (2019). Business analytics adoption process: An innovation diffusion perspective. International Journal of Information Management, 49, 411-423. https://doi.org/10.1016/j.ijinfomgt.2019.07.017
- Narwane, V. S., Raut, R. D., Gardas, B. B., Kavre, M. S., and Narkhede, B. E. (2019). Factors affecting the adoption of cloud of things. Journal of Systems and Information Technology, 21(4), 397-418. https://doi.org/10.1108/JSIT-10-2018-0137
- Nasir, S. (2005). The development, change, and transformation of Management Information Systems (MIS): A content analysis of articles published in business and marketing journals. International Journal of Information Management, 25(5), 442-457. https://doi.org/10.1016/j.ijinfomgt.2005.06.003
- Nayak, B., Bhattacharyya, S. S., and Krishnamoorthy, B. (2019). Integrating wearable technology products and big data analytics in business strategy. Journal of Systems and Information Technology, 21(2), 255-275. https://doi.org/10.1108/JSIT-08-2018-0109
- New Vantage Partners (2019). Big data and AI executive survey 2019. Retrieved 1 March 2020 from https://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings-Updated-010219-1.pdf
- Nkhoma, M. Z., Dang, D. P., and De Souza-Daw, A. (2013). Contributing factors of cloud computing adoption: A technology-organisation-environment framework approach. In Proceedings of the European Conference on Information Management & Evaluation, 180-189.
- Oliveira, T., Thomas, M., and Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497-510. https://doi.org/10.1016/j.im.2014.03.006
- Park, S. B., Lee, S., Chae, S. W., and Zo, H. (2015). An empirical study of the factors influencing the task performances of SaaS users. Asia Pacific Journal of Information Systems, 25(2), 265-288. https://doi.org/10.14329/apjis.2015.25.2.265
- Patton, M. (1990). Qualitative evaluation and research methods (2nd ed.). Thousand Oaks, CA: Sage.
- Picoto, W. N., Belanger, F., and Palma-dos-Reis, A. (2014). A technology-organisation-environment (TOE)-based m-business value instrument. International Journal of Mobile Communications, 12(1), 78-101. https://doi.org/10.1504/IJMC.2014.059240
- Popovic, A., Hackney, R., Coelho, P. S., and Jaklic, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729-739. https://doi.org/10.1016/j.dss.2012.08.017
- Porter, M. E. (1981). The contributions of industrial organization to strategic management. Academy of Management Review, 6(4), 609-620. https://doi.org/10.2307/257639
- Porter, M. E., and Victor, E. M. (1985). How information gives you competitive advantage. Harvard Business Review, 85(July-August), 149-160.
- Premkumar, G., and Roberts, M. (1999). Adoption of new information technologies in rural small businesses. Omega, 27(4), 467-484. https://doi.org/10.1016/S0305-0483(98)00071-1
- Premkumar, G., Ramamurthy, K., and Nilakanta, S. (1994). Implementation of electronic data interchange: An innovation diffusion perspective. Journal of Management Information Systems, 11(2), 157-186. https://doi.org/10.1080/07421222.1994.11518044
- Puklavec, B., Oliveira, T., and Popovic, A. (2018). Understanding the determinants of business intelligence system adoption stages. Industrial Management & Data Systems, 118(1), 236-261. https://doi.org/10.1108/IMDS-05-2017-0170
- Ramamurthy, K. R., Sen, A., and Sinha, A. P. (2008). An empirical investigation of the key determinants of data warehouse adoption. Decision Support Systems, 44(4), 817-841. https://doi.org/10.1016/j.dss.2007.10.006
- Ramanathan, R., Duan, Y., Cao, G., and Philpott, E. (2012). Diffusion and impact of business analytics: A conceptual framework. World Academy of Science, Engineering & Technology, 6(9), 208-213.
- Ramanathan, R., Philpott, E., Duan, Y., and Cao, G. (2017). Adoption of business analytics and impact on performance: A qualitative study in retail. Production Planning & Control, 28(11-12), 985-998. https://doi.org/10.1080/09537287.2017.1336800
- Ramdani, B., and Kawalek, P. (2008). Exploring SMEs adoption of broadband in the northwest of England. In Handbook of research on global diffusion of broadband data transmission (pp. 504-523). IGI Global.
- Ramdani, B., Chevers, D., and Williams, D. A. (2013). SMEs' adoption of enterprise applications: A technology-organisation-environment model. Journal of Small Business & Enterprise Development, 20(4), 735-753. https://doi.org/10.1108/JSBED-12-2011-0035
- Ransbotham, S., Kiron, D., and Prentice, P. K. (2015). Minding the analytics gap. MIT Sloan Management Review, 56(3), 63.
- Rogers, E. M. (1995). Diffusion of innovation. New York: Free Press.
- Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.
- RUI, G. (2007). Information systems innovation adoption among organizations-A match-based framework and empirical studies. Doctoral Dissertation. National University of Singapore.
- Ryan, G. W., and Bernard, H. R. (2003). Techniques to identify themes. Field Methods, 15(1), 85-109. https://doi.org/10.1177/1525822X02239569
- Sambamurthy, V., Bharadwaj, A., and Grover, V. (2003). Shaping agility through digital options: Reconceptualizing the role of information technology in contemporary firms. MIS Quarterly, 27(2), 237-263. https://doi.org/10.2307/30036530
- Sharma, R., Mithas, S., and Kankanhalli, A. (2014). Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23(4), 433-441. https://doi.org/10.1057/ejis.2014.17
- Shepard, H. A. (1967). Innovation-resisting and innovation-producing organizations. The Journal of Business, 40(4), 470-477. https://doi.org/10.1086/295012
- Srivastava, S. C., and Teo, T. S. (2007). E-government payoffs: Evidence from cross-country data. Journal of Global Information Management, 15(4), 20-41. https://doi.org/10.4018/jgim.2007100102
- Subramanian, G. H., and Nosek, J. T. (2001). An empirical study of the measurement and instrument validation of perceived strategy value of information systems. Journal of Computer Information Systems, 41(3), 64-69.
- Sun, S., Cegielski, C. G., Jia, L., and Hall, D. J. (2018). Understanding the factors affecting the organizational adoption of big data. Journal of Computer Information Systems, 58(3), 193-203. https://doi.org/10.1080/08874417.2016.1222891
- Teece, D. J., Pisano, G., and Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
- Thompson, V. A. (1965). Bureaucracy and innovation. Administrative Science Quarterly, 10(1), 1-20. https://doi.org/10.2307/2391646
- Tornatzky, L., and Fleischer, M. (1990). The process of technology innovation. Lexington, MA: Lexington Books.
- Vaismoradi, M., Jones, J., Turunen, H., and Snelgrove, S. (2016). Theme development in qualitative content analysis and thematic analysis. Journal of Nursing Education and Practice, 6(5), 6-7. https://doi.org/10.5430/jnep.v6n5p100
- Verma, S., and Bhattacharyya, S. S. (2017). Perceived strategic value-based adoption of Big Data Analytics in emerging economy. Journal of Enterprise Information Management, 30(3), 354-382. https://doi.org/10.1108/JEIM-10-2015-0099
- Vidgen, R., Shaw, S., and Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626-639. https://doi.org/10.1016/j.ejor.2017.02.023
- Wade, M., and Hulland, J. (2004). The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Quarterly, 28(1), 107-142. https://doi.org/10.2307/25148626
- Wang, Y. M., Wang, Y. S., and Yang, Y. F. (2010). Understanding the determinants of RFID adoption in the manufacturing industry. Technological Forecasting and Social Change, 77(5), 803-815. https://doi.org/10.1016/j.techfore.2010.03.006
- Watson, H. J., and Wixom, B. H. (2007). The current state of business intelligence. IEEE Computer Society, 40(9), 96-99. https://doi.org/10.1109/MC.2007.331
- Wernerfelt, B. (1984). A resource based view of the firm. Strategic Management Journal, 5(2), 171-180. https://doi.org/10.1002/smj.4250050207
- Xavier, M. J., Srinivasan, A., and Thamizhvanan, A. (2011). Use of analytics in Indian enterprises: An exploratory study. Journal of Indian Business Research, 3(3), 168-179. https://doi.org/10.1108/17554191111157038
- Zhang, C., and Dhaliwal, J. (2009). An investigation of resource-based and institutional theoretic factors in technology adoption for operations and supply chain management. International Journal of Production Economics, 120(1), 252-269. https://doi.org/10.1016/j.ijpe.2008.07.023
- Zheng, D., Chen, J., Huang, L., and Zhang, C. (2013). E-government adoption in public administration organizations: Integrating institutional theory perspective and resource-based view. European Journal of Information Systems, 22(2), 221-234. https://doi.org/10.1057/ejis.2012.28
- Zhu, K., and Kraemer, K. L. (2005). Post-adoption variations in usage and value of e-business by organizations: Cross-country evidence from the retail industry. Information Systems Research, 16(1), 61-84. https://doi.org/10.1287/isre.1050.0045
- Zhu, K., Dong, S., Xu, S. X., and Kraemer, K. L. (2006). Innovation diffusion in global contexts: Determinants of post-adoption digital transformation of European companies. European Journal of Information Systems, 15(6), 601-616. https://doi.org/10.1057/palgrave.ejis.3000650
- Zmud, R. W. (1982). Diffusion of modern software practices: Influence of centralization and formalization. Management Science, 28(12), 1421-1431. https://doi.org/10.1287/mnsc.28.12.1421