DOI QR코드

DOI QR Code

Key Themes for Multi-Stage Business Analytics Adoption in Organizations

  • Received : 2019.11.18
  • Accepted : 2020.03.24
  • Published : 2020.06.30

Abstract

Business analytics is a management tool for achieving significant business performance improvements. Many organizations fail to or only partially achieve their business objectives and goals from business analytics. Business analytics adoption is a multi-stage complex activity consisting of evaluation, adoption, and assimilation stages. Several research papers have been published in the field of business analytics, but the research on multi-stage BA adoption is fewer in number. This study contributes to the scant literature on the multi-stage adoption model by identifying the critical themes for evaluation, adoption, and assimilation stages of business analytics. This study uses the thematic content analysis of peer-reviewed published academic papers as a research technique to explore the key themes of business analytics adoption. This study links the critical themes with the popular theoretical foundations: Resource-Based View (RBV), Dynamic Capabilities, Diffusion of Innovations, and Technology-Organizational-Environmental (TOE) framework. The study identifies twelve major factors categorized into three key themes: organizational characteristics, innovation characteristics, and environmental characteristics. The main organizational factors are top management support, organization data environment, centralized analytics structure, perceived cost, employee skills, and data-based decision making culture. The major innovation characteristics are perceived benefits, complexity, and compatibility, and information technology assets. The environmental factors influencing BA adoption stages are competition and industry pressure. A conceptual framework for the multi-stage BA adoption model is proposed in this study. The findings of this study can assist the practicing managers in developing a stage-wise operational strategy for business analytics adoption. Future research can also attempt to validate the conceptual model proposed in this study.

Keywords

References

  1. Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., and Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113-131. https://doi.org/10.1016/j.ijpe.2016.08.018
  2. Alharthi, A., Krotov, V., and Bowman, M. (2017). Addressing barriers to big data. Business Horizons, 60(3), 285-292. https://doi.org/10.1016/j.bushor.2017.01.002
  3. Al-Qirim, N., Rouibah, K., Serhani, M. A., Tarhini, A., Khalil, A., Maqableh, M., and Gergely, M. (2019). The strategic adoption of big data in organizations. In Managerial perspectives on intelligent big data analytics (pp. 43-54). IGI Global.
  4. Alshamaila, Y., Papagiannidis, S., and Li, F. (2013). Cloud computing adoption by SMEs in the north east of England: A multi-perspective framework. Journal of Enterprise Information Management, 26(3), 250-275. https://doi.org/10.1108/17410391311325225
  5. Awa, H., and Ojiabo, O. (2016). A model of adoption determinants of ERP within T-O-E framework. Information Technology & People, 29(4), 901-930. https://doi.org/10.1108/ITP-03-2015-0068
  6. Baker, J. (2012). The technology-organization-environment framework. In Information systems theory (pp. 231-245). Springer, New York, NY.
  7. Banerjee, A., and Williams, S. A. (2009). International service outsourcing: Using offshore analytics to identify determinants of value added outsourcing. Strategic Outsourcing: An International Journal, 2(1), 68-79. https://doi.org/10.1108/17538290910935909
  8. Barney, J. B. (2001). Resource-based theories of competitive advantage: A ten-year retrospective on the resource-based view. Journal of Management, 27(6), 643-650. https://doi.org/10.1177/014920630102700602
  9. Barton, D., and Court, D. (2012). Making advanced analytics work for you. Harvard Business Review, 90(10), 78-83.
  10. Bean, R., and Davenport, T. H. (2019). Companies are failing in their efforts to become data-driven. Harvard Business Review, Retrieved from https://hbr.org/2019/02/companies-are-failing-in-their-efforts-to-become-data-driven
  11. Bose, R. (2009). Advanced analytics: Opportunities and challenges. Industrial Management & Data Systems, 109(2), 155-172. https://doi.org/10.1108/02635570910930073
  12. Bose, R., and Luo, X. (2011). Integrative framework for assessing firms' potential to undertake Green IT initiatives via virtualization-A theoretical perspective. The Journal of Strategic Information Systems, 20(1), 38-54. https://doi.org/10.1016/j.jsis.2011.01.003
  13. Bradley, E. H., Curry, L. A., and Devers, K. J. (2007). Qualitative data analysis for health services research: Developing taxonomy, themes, and theory. Health Services Research, 42(4), 1758-1772. https://doi.org/10.1111/j.1475-6773.2006.00684.x
  14. Braganza, A., Brooks, L., Nepelski, D., Ali, M., and Moro, R. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328-337. https://doi.org/10.1016/j.jbusres.2016.08.006
  15. Braun, V., and Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
  16. Buetow, S. (2010). Thematic analysis and its reconceptualization as saliency analysis. Journal of Health Services Research & Policy, 15(2), 123-125. https://doi.org/10.1258/jhsrp.2009.009081
  17. Caldeira, M. M., and Ward, J. M. (2003). Using resource-based theory to interpret the successful adoption and use of information systems and technology in manufacturing small and medium-sized enterprises. European Journal of Information Systems, 12(2), 127-141. https://doi.org/10.1057/palgrave.ejis.3000454
  18. Chan, F. T., and Chong, A. Y. L. (2013). Determinants of mobile supply chain management system diffusion: A structural equation analysis of manufacturing firms. International Journal of Production Research, 51(4), 1196-1213. https://doi.org/10.1080/00207543.2012.693961
  19. Chen, D. Q., Preston, D. S., and Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management. Journal of Management Information Systems, 32(4), 4-39. https://doi.org/10.1080/07421222.2015.1138364
  20. Chen, H., Chiang, R. H., and Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503
  21. Chen, L., and Nath, R. (2018). Business analytics maturity of firms: An examination of the relationships between managerial perception of IT, business analytics maturity and success. Information Systems Management, 35(1), 62-77. https://doi.org/10.1080/10580530.2017.1416948
  22. Chong, A. Y. L., and Chan, F. T. (2012). Structural equation modeling for multi-stage analysis on Radio Frequency Identification(RFID) diffusion in the health care industry. Expert Systems with Applications, 39(10), 8645-8654. https://doi.org/10.1016/j.eswa.2012.01.201
  23. Chwelos, P., Benbasat, I., and Dexter, A. S. (2001). Empirical test of an EDI adoption model. Information Systems Research, 12(3), 304-321. https://doi.org/10.1287/isre.12.3.304.9708
  24. Coghlan, T., Diehl, G., Karson, E., Liberatore, M., Luo, W., Nydick, R., ... and Wagner, W. (2010). The current state of analytics in the corporation: The view from industry leaders. International Journal of Business Intelligence Research(IJBIR), 1(2), 1-8. https://doi.org/10.4018/jbir.2010040101
  25. Cooper, B. L., Watson, H. J., Wixom, B. H., and Goodhue, D. L. (2000). Data warehousing supports corporate strategy at first American corporation. MIS Quarterly, 24(4), 547-567. https://doi.org/10.2307/3250947
  26. Corte-Real, N., Ruivo, P., and Oliveira, T. (2014). The diffusion stages of business intelligence and analytics (BI&A): A systematic mapping study. Procedia Technology, 16, 172-179. https://doi.org/10.1016/j.protcy.2014.10.080
  27. Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84(1), 98.
  28. Depietro, R., Wiarda, E., and Fleischer, M. (1990). The context for change: Organization, technology, and environment. The Processes of Technological Innovation, 199, 151-175.
  29. Drumwright, M. E. (1996). Company advertising with a social dimension: The role of noneconomic criteria. Journal of Marketing, 60(4), 71-87. https://doi.org/10.1177/002224299606000407
  30. Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., and Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource based view and big data culture. British Journal of Management, 30(2), 341-361. https://doi.org/10.1111/1467-8551.12355
  31. Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., and Roubaud, D. (2017). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting & Social Change, 144, 534-545.
  32. Dutta, D., and Bose, I. (2015). Managing a big data project: The case of ramco cements limited. International Journal of Production Economics, 165, 293-306. https://doi.org/10.1016/j.ijpe.2014.12.032
  33. Eisenhardt, K. M., and Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21(10-11), 1105-1121. https://doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E
  34. Erevelles, S., Fukawa, N., and Swayne, L. (2016). Big data consumer analytics and the transformation of marketing. Journal of Business Research, 69(2), 897-904. https://doi.org/10.1016/j.jbusres.2015.07.001
  35. Flint, D. J., Woodruff, R. B., and Gardial, S. F. (2002). Exploring the phenomenon of customers' desired value change in a business-to-business context. Journal of Marketing, 66(4), 102-117. https://doi.org/10.1509/jmkg.66.4.102.18517
  36. Frizzo-Barker, J., Chow-White, P. A., Mozafari, M., and Ha, D. (2016). An empirical study of the rise of big data in business scholarship. International Journal of Information Management, 36(3), 403-413. https://doi.org/10.1016/j.ijinfomgt.2016.01.006
  37. Gandomi, A., and Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  38. Gangwar, H. (2018). Understanding the determinants of big data adoption in India: An analysis of the manufacturing and services sectors. Information Resources Management Journal(IRMJ), 31(4), 1-22. https://doi.org/10.4018/IRMJ.2018100101
  39. Gangwar, H., and Date, H. (2016). Critical factors of cloud computing adoption in organizations: An empirical study. Global Business Review, 17(4), 886-904. https://doi.org/10.1177/0972150916645692
  40. Ghasemaghaei, M., Ebrahimi, S., and Hassanein, K. (2018). Data analytics competency for improving firm decision making performance. The Journal of Strategic Information Systems, 27(1), 101-113. https://doi.org/10.1016/j.jsis.2017.10.001
  41. Goode, S., and Stevens, K. (2000). An analysis of the business characteristics of adopters and non adopters of World Wide Web technology. Information Technology & Management, 1(1-2), 129-154. https://doi.org/10.1023/A:1019112722593
  42. Grossman, R., and Siegel, K. (2014). Organizational models for big data and analytics. Journal of Organization Design, 3(1), 20-25. https://doi.org/10.7146/jod.9799
  43. Gu, V. C., Cao, Q., and Duan, W. (2012). Unified Modeling Language(UML) IT adoption-A holistic model of organizational capabilities perspective. Decision Support Systems, 54(1), 257-269. https://doi.org/10.1016/j.dss.2012.05.034
  44. Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., and Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308-317. https://doi.org/10.1016/j.jbusres.2016.08.004
  45. Gupta, M., and George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049-1064. https://doi.org/10.1016/j.im.2016.07.004
  46. Gutierrez, A., Boukrami, E., and Lumsden, R. (2015). Technological, organizational and environmental factors influencing managers' decision to adopt cloud computing in the UK. Journal of Enterprise Information Management, 28(6), 788-807. https://doi.org/10.1108/JEIM-01-2015-0001
  47. Hoque, M. R., Ali, M. A., and Mahfuz, M. A. (2015). An empirical investigation on the adoption of E-commerce in Bangladesh. Asia Pacific Journal of Information Systems, 25(1), 1-24. https://doi.org/10.14329/apjis.2015.25.1.001
  48. Hsu, P. F., Ray, S., and Li-Hsieh, Y. Y. (2014). Examining cloud computing adoption intention, pricing mechanism, and deployment model. International Journal of Information Management, 34(4), 474-488. https://doi.org/10.1016/j.ijinfomgt.2014.04.006
  49. Jeyaraj, A., Rottman, J. W., and Lacity, M. C. (2006). A review of the predictors, linkages, and biases in IT innovation adoption research. Journal of Information Technology, 21(1), 1-23. https://doi.org/10.1057/palgrave.jit.2000056
  50. Ka, H. K., and Kim, J. S. (2014). An empirical study on the influencing factors for big data intented adoption: Focusing on the strategic value recognition and TOE framework. Asia Pacific Journal of Information Systems, 24(4), 443-472. https://doi.org/10.14329/apjis.2014.24.4.443
  51. Kapoor, K. K., Dwivedi, Y. K., and Williams, M. D. (2014). Rogers' innovation adoption attributes: A systematic review and synthesis of existing research. Information Systems Management, 31(1), 74-91. https://doi.org/10.1080/10580530.2014.854103
  52. Kim, S., and Garrison, G. (2010). Understanding users' behaviors regarding supply chain technology: Determinants impacting the adoption and implementation of RFID technology in South Korea. International Journal of Information Management, 30(5), 388-398. https://doi.org/10.1016/j.ijinfomgt.2010.02.008
  53. Kiron, D., and Shockley, R. (2011). Creating business value with analytics. MIT Sloan Management Review, 53(1), 57-63.
  54. Klatt, T., Schlaefke, M., and Moeller, K. (2011). Integrating business analytics into strategic planning for better performance. Journal of Business Strategy, 32(6), 30-39. https://doi.org/10.1108/02756661111180113
  55. Kuan, K. K., and Chau, P. Y. (2001). A perception-based model for EDI adoption in small businesses using a technology-organization-environment framework. Information & Management, 38(8), 507-521. https://doi.org/10.1016/S0378-7206(01)00073-8
  56. Kumar, V., and Petersen, J. A. (2005). Using a customer-level marketing strategy to enhance firm performance: A review of theoretical and empirical evidence. Journal of the Academy of Marketing Science, 33(4), 504-519. https://doi.org/10.1177/0092070305275857
  57. Kwon, O., Lee, N., and Shin, B. (2014). Data quality management, data usage experience and acquisition intention of big data analytics. International Journal of Information Management, 34(3), 387-394. https://doi.org/10.1016/j.ijinfomgt.2014.02.002
  58. Lai, Y., Sun, H., and Ren, J. (2018). Understanding the determinants of big data analytics(BDA) adoption in logistics and supply chain management. International Journal of Logistics Management, 29(2), 676-703. https://doi.org/10.1108/IJLM-06-2017-0153
  59. Lautenbach, P., Johnston, K., and Adeniran-Ogundipe, T. (2017). Factors influencing business intelligence and analytics usage extent in South African organisations. South African Journal of Business Management, 48(3), 23-33. https://doi.org/10.4102/sajbm.v48i3.33
  60. Lavalle, S., Lesser, E., Shockley, R., Hopkins, M. S., and Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT Sloan Management Review, 52(2), 21-32.
  61. Lee, J. U., Seo, K. J., and Kim, H. W. (2014). An exploratory study on the cloud computing services: Issues and suggestion for the success. Asia Pacific Journal of Information Systems, 24(4), 473-491. https://doi.org/10.14329/apjis.2014.24.4.473
  62. Levenburg, N., Magal, S. R., and Kosalge, P. (2006). An exploratory investigation of organizational factors and e business motivations among SMFOEs in the US. Electronic Markets, 16(1), 70-84. https://doi.org/10.1080/10196780500491402
  63. Liang, H., Saraf, N., Hu, Q., and Xue, Y. (2007). Assimilation of enterprise systems: The effect of institutional pressures and the mediating role of top management. MIS Quarterly, 31(1), 59-87. https://doi.org/10.2307/25148781
  64. Lim, J. H., Stratopoulos, T. C., and Wirjanto, T. S. (2011). Path dependence of dynamic information technology capability: An empirical investigation. Journal of Management Information Systems, 28(3), 45-84. https://doi.org/10.2753/MIS0742-1222280302
  65. Lin, H. F., Su, J. Q., and Higgins, A. (2016). How dynamic capabilities affect adoption of management innovations. Journal of Business Research, 69(2), 862-876. https://doi.org/10.1016/j.jbusres.2015.07.004
  66. Lind, M. R., and Zmud, R. W. (1991). The influence of a convergence in understanding between technology providers and users on information technology innovativeness. Organization Science, 2(2), 195-217. https://doi.org/10.1287/orsc.2.2.195
  67. Low, C., Chen, Y., and Wu, M. (2011). Understanding the determinants of cloud computing adoption. Industrial Management and Data Systems, 111(7), 1006-1023. https://doi.org/10.1108/02635571111161262
  68. Mathew, S. K. (2012). Adoption of business intelligence systems in Indian fashion retail. International Journal of Business Information Systems, 9(3), 261-277. https://doi.org/10.1504/IJBIS.2012.045718
  69. McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., and Barton, D. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68.
  70. Musawa, M. S., and Wahab, E. (2012). The adoption of electronic data interchange (EDI) technology by Nigerian SMEs: A conceptual framework. Journal of Business Management and Economics, 3(2), 55-68.
  71. Nam, D., Lee, J., and Lee, H. (2019). Business analytics adoption process: An innovation diffusion perspective. International Journal of Information Management, 49, 411-423. https://doi.org/10.1016/j.ijinfomgt.2019.07.017
  72. Narwane, V. S., Raut, R. D., Gardas, B. B., Kavre, M. S., and Narkhede, B. E. (2019). Factors affecting the adoption of cloud of things. Journal of Systems and Information Technology, 21(4), 397-418. https://doi.org/10.1108/JSIT-10-2018-0137
  73. Nasir, S. (2005). The development, change, and transformation of Management Information Systems (MIS): A content analysis of articles published in business and marketing journals. International Journal of Information Management, 25(5), 442-457. https://doi.org/10.1016/j.ijinfomgt.2005.06.003
  74. Nayak, B., Bhattacharyya, S. S., and Krishnamoorthy, B. (2019). Integrating wearable technology products and big data analytics in business strategy. Journal of Systems and Information Technology, 21(2), 255-275. https://doi.org/10.1108/JSIT-08-2018-0109
  75. New Vantage Partners (2019). Big data and AI executive survey 2019. Retrieved 1 March 2020 from https://newvantage.com/wp-content/uploads/2018/12/Big-Data-Executive-Survey-2019-Findings-Updated-010219-1.pdf
  76. Nkhoma, M. Z., Dang, D. P., and De Souza-Daw, A. (2013). Contributing factors of cloud computing adoption: A technology-organisation-environment framework approach. In Proceedings of the European Conference on Information Management & Evaluation, 180-189.
  77. Oliveira, T., Thomas, M., and Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & Management, 51(5), 497-510. https://doi.org/10.1016/j.im.2014.03.006
  78. Park, S. B., Lee, S., Chae, S. W., and Zo, H. (2015). An empirical study of the factors influencing the task performances of SaaS users. Asia Pacific Journal of Information Systems, 25(2), 265-288. https://doi.org/10.14329/apjis.2015.25.2.265
  79. Patton, M. (1990). Qualitative evaluation and research methods (2nd ed.). Thousand Oaks, CA: Sage.
  80. Picoto, W. N., Belanger, F., and Palma-dos-Reis, A. (2014). A technology-organisation-environment (TOE)-based m-business value instrument. International Journal of Mobile Communications, 12(1), 78-101. https://doi.org/10.1504/IJMC.2014.059240
  81. Popovic, A., Hackney, R., Coelho, P. S., and Jaklic, J. (2012). Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems, 54(1), 729-739. https://doi.org/10.1016/j.dss.2012.08.017
  82. Porter, M. E. (1981). The contributions of industrial organization to strategic management. Academy of Management Review, 6(4), 609-620. https://doi.org/10.2307/257639
  83. Porter, M. E., and Victor, E. M. (1985). How information gives you competitive advantage. Harvard Business Review, 85(July-August), 149-160.
  84. Premkumar, G., and Roberts, M. (1999). Adoption of new information technologies in rural small businesses. Omega, 27(4), 467-484. https://doi.org/10.1016/S0305-0483(98)00071-1
  85. Premkumar, G., Ramamurthy, K., and Nilakanta, S. (1994). Implementation of electronic data interchange: An innovation diffusion perspective. Journal of Management Information Systems, 11(2), 157-186. https://doi.org/10.1080/07421222.1994.11518044
  86. Puklavec, B., Oliveira, T., and Popovic, A. (2018). Understanding the determinants of business intelligence system adoption stages. Industrial Management & Data Systems, 118(1), 236-261. https://doi.org/10.1108/IMDS-05-2017-0170
  87. Ramamurthy, K. R., Sen, A., and Sinha, A. P. (2008). An empirical investigation of the key determinants of data warehouse adoption. Decision Support Systems, 44(4), 817-841. https://doi.org/10.1016/j.dss.2007.10.006
  88. Ramanathan, R., Duan, Y., Cao, G., and Philpott, E. (2012). Diffusion and impact of business analytics: A conceptual framework. World Academy of Science, Engineering & Technology, 6(9), 208-213.
  89. Ramanathan, R., Philpott, E., Duan, Y., and Cao, G. (2017). Adoption of business analytics and impact on performance: A qualitative study in retail. Production Planning & Control, 28(11-12), 985-998. https://doi.org/10.1080/09537287.2017.1336800
  90. Ramdani, B., and Kawalek, P. (2008). Exploring SMEs adoption of broadband in the northwest of England. In Handbook of research on global diffusion of broadband data transmission (pp. 504-523). IGI Global.
  91. Ramdani, B., Chevers, D., and Williams, D. A. (2013). SMEs' adoption of enterprise applications: A technology-organisation-environment model. Journal of Small Business & Enterprise Development, 20(4), 735-753. https://doi.org/10.1108/JSBED-12-2011-0035
  92. Ransbotham, S., Kiron, D., and Prentice, P. K. (2015). Minding the analytics gap. MIT Sloan Management Review, 56(3), 63.
  93. Rogers, E. M. (1995). Diffusion of innovation. New York: Free Press.
  94. Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.
  95. RUI, G. (2007). Information systems innovation adoption among organizations-A match-based framework and empirical studies. Doctoral Dissertation. National University of Singapore.
  96. Ryan, G. W., and Bernard, H. R. (2003). Techniques to identify themes. Field Methods, 15(1), 85-109. https://doi.org/10.1177/1525822X02239569
  97. Sambamurthy, V., Bharadwaj, A., and Grover, V. (2003). Shaping agility through digital options: Reconceptualizing the role of information technology in contemporary firms. MIS Quarterly, 27(2), 237-263. https://doi.org/10.2307/30036530
  98. Sharma, R., Mithas, S., and Kankanhalli, A. (2014). Transforming decision-making processes: A research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23(4), 433-441. https://doi.org/10.1057/ejis.2014.17
  99. Shepard, H. A. (1967). Innovation-resisting and innovation-producing organizations. The Journal of Business, 40(4), 470-477. https://doi.org/10.1086/295012
  100. Srivastava, S. C., and Teo, T. S. (2007). E-government payoffs: Evidence from cross-country data. Journal of Global Information Management, 15(4), 20-41. https://doi.org/10.4018/jgim.2007100102
  101. Subramanian, G. H., and Nosek, J. T. (2001). An empirical study of the measurement and instrument validation of perceived strategy value of information systems. Journal of Computer Information Systems, 41(3), 64-69.
  102. Sun, S., Cegielski, C. G., Jia, L., and Hall, D. J. (2018). Understanding the factors affecting the organizational adoption of big data. Journal of Computer Information Systems, 58(3), 193-203. https://doi.org/10.1080/08874417.2016.1222891
  103. Teece, D. J., Pisano, G., and Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z
  104. Thompson, V. A. (1965). Bureaucracy and innovation. Administrative Science Quarterly, 10(1), 1-20. https://doi.org/10.2307/2391646
  105. Tornatzky, L., and Fleischer, M. (1990). The process of technology innovation. Lexington, MA: Lexington Books.
  106. Vaismoradi, M., Jones, J., Turunen, H., and Snelgrove, S. (2016). Theme development in qualitative content analysis and thematic analysis. Journal of Nursing Education and Practice, 6(5), 6-7. https://doi.org/10.5430/jnep.v6n5p100
  107. Verma, S., and Bhattacharyya, S. S. (2017). Perceived strategic value-based adoption of Big Data Analytics in emerging economy. Journal of Enterprise Information Management, 30(3), 354-382. https://doi.org/10.1108/JEIM-10-2015-0099
  108. Vidgen, R., Shaw, S., and Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261(2), 626-639. https://doi.org/10.1016/j.ejor.2017.02.023
  109. Wade, M., and Hulland, J. (2004). The resource-based view and information systems research: Review, extension, and suggestions for future research. MIS Quarterly, 28(1), 107-142. https://doi.org/10.2307/25148626
  110. Wang, Y. M., Wang, Y. S., and Yang, Y. F. (2010). Understanding the determinants of RFID adoption in the manufacturing industry. Technological Forecasting and Social Change, 77(5), 803-815. https://doi.org/10.1016/j.techfore.2010.03.006
  111. Watson, H. J., and Wixom, B. H. (2007). The current state of business intelligence. IEEE Computer Society, 40(9), 96-99. https://doi.org/10.1109/MC.2007.331
  112. Wernerfelt, B. (1984). A resource based view of the firm. Strategic Management Journal, 5(2), 171-180. https://doi.org/10.1002/smj.4250050207
  113. Xavier, M. J., Srinivasan, A., and Thamizhvanan, A. (2011). Use of analytics in Indian enterprises: An exploratory study. Journal of Indian Business Research, 3(3), 168-179. https://doi.org/10.1108/17554191111157038
  114. Zhang, C., and Dhaliwal, J. (2009). An investigation of resource-based and institutional theoretic factors in technology adoption for operations and supply chain management. International Journal of Production Economics, 120(1), 252-269. https://doi.org/10.1016/j.ijpe.2008.07.023
  115. Zheng, D., Chen, J., Huang, L., and Zhang, C. (2013). E-government adoption in public administration organizations: Integrating institutional theory perspective and resource-based view. European Journal of Information Systems, 22(2), 221-234. https://doi.org/10.1057/ejis.2012.28
  116. Zhu, K., and Kraemer, K. L. (2005). Post-adoption variations in usage and value of e-business by organizations: Cross-country evidence from the retail industry. Information Systems Research, 16(1), 61-84. https://doi.org/10.1287/isre.1050.0045
  117. Zhu, K., Dong, S., Xu, S. X., and Kraemer, K. L. (2006). Innovation diffusion in global contexts: Determinants of post-adoption digital transformation of European companies. European Journal of Information Systems, 15(6), 601-616. https://doi.org/10.1057/palgrave.ejis.3000650
  118. Zmud, R. W. (1982). Diffusion of modern software practices: Influence of centralization and formalization. Management Science, 28(12), 1421-1431. https://doi.org/10.1287/mnsc.28.12.1421