References
- 김량형, 유동희, 김건우, "데이터마이닝 기법을 이용한 기업부실화 예측 모델 개발과 예측성능 향상에 관한 연구", Information Systems Review, 제18권, 제2호, 2016, pp. 173-198. https://doi.org/10.14329/isr.2016.18.2.173
- 김주현, 원정임, "비지도학습 딥러닝을 활용한 이상거래탐지 시스템 모델", 한국정보과학회 학술발표논문집, 2018, pp. 917-919.
- 김한용, 이우주, "불균형적인 이항 자료 분석을 위한 샘플링 알고리즘들: 성능비교 및 주의점", Korean Journal of Applied Statistics, 제30권, 제5호, 2017, pp. 681-690. https://doi.org/10.5351/KJAS.2017.30.5.681
- 박재훈, 김휘강, 김은진, "의사결정나무를 이용한 이상금융거래 탐지 정규화 방법에 관한 연구", Journal of The Korea Institute of Information Security & Cryptology, 제25권, 제1호, 2015, pp. 133-146. https://doi.org/10.13089/JKIISC.2015.25.1.133
- 서상현, 전용진, 이종수, 정호재, 김준태, "불균형 빅데이터의 효율적인 분류를 위한 생성적 적대 신경망 기반 오버샘플링 기법", 한국정보과학회 학술발표논문집, 2017, pp. 1030-1032.
- 손민재, 정승원, 황인준, "Conditional GAN을 활용한 오버샘플링 기법", 한국정보처리학회 추계학술대회 논문집, 제25권, 제2호, 2018, pp. 609-612.
- 이용현, 구해모, 김형주, "오토인코더를 활용한 효율적인 신용카드 사기 탐지 지도 기법", 정보과학회컴퓨팅의 실제논문지, 제25권, 제1호, 2019, pp. 1-8. https://doi.org/10.5626/KTCP.2019.25.1.1
- Arjovsky, M., S. Chintala, and L. Bottou, "Wasserstein gan", arXiv preprint, arXiv:1701.07875, 2017.
- Burez, J. and D. Van den Poel, "Handling class imbalance in customer churn prediction", Expert Systems with Applications, Vol.36, 2009, pp. 4626-4636. https://doi.org/10.1016/j.eswa.2008.05.027
- Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique", Journal of Articial Intelligence Research, Vol.16, 2002, pp. 321-357. https://doi.org/10.1613/jair.953
- Dal Pozzolo, A., O. Caelen, R. A. Johnson, and G. Bontempi, "Calibrating probability with under-sampling for unbalanced classification", In Computational Intelligence, 2015 IEEE Symposium Series on, 2015, pp. 159-166.
- Douzas, G. and F. Bacao, "Effective data generation for imbalanced learning using conditional generative adversarial networks", Expert Systems with Applications, Vol.91, 2018, pp. 464-471. https://doi.org/10.1016/j.eswa.2017.09.030
- Ester, M., H. P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise", In Proceedings of Second International Conference on Knowledge Discovery and Data Mining, 1996, pp. 226-231.
- Fernandez-Delgado, M., E. Cernadas, S. Barro, and D. Amorim, "Do we need hundreds of classifiers to solve real world classification problems?", Journal of Machine Learning Research, Vol.15, No.1, 2014, pp. 3133-3181.
- Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, Generative Adversarial Nets, NIPS' 2014, 2014.
- Haixiang, G., L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, "Learning from class-imbalanced data", Review of Methods and Applications, Vol.73, 2017, pp. 220-239. https://doi.org/10.1016/j.eswa.2016.12.035
- Ham, J., Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data", IEEE Transactions on Geoscience and Remote Sensing, Vol.43, No.3, 2005, pp. 492-501. https://doi.org/10.1109/TGRS.2004.842481
- Haykin, S., Neural Networks and Learning Machines, Pearson Prentice-Hall, New York, NY, 2009.
- He, H. and E. A. Garcia, "Learning from imbalanced data", IEEE Transactions on Knowledge and Data Engineering, Vol.21, No.9, 2009, pp. 1263-1284 https://doi.org/10.1109/TKDE.2008.239
- Hearst, M. A., S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, "Support vector machines", IEEE Intelligent Systems and Their Applications, Vol.13, No.4, 1998, pp. 18-28. https://doi.org/10.1109/5254.708428
- Hinton, G. E., S. Osindero, and Y. The, "A fast learning algorithm for deep belief nets", Neural Computation, Vol.18, 2006, pp. 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Liaw, A. and M. Wiener, "Classification and regression by random Forest", R News, Vol.2, No.3, 2002, pp. 18-22.
- Mirza, M. and S. Osindero, "Conditional generative adversarial nets", arXiv preprint, arXiv:1411.1784, 2014.
- Murphy, K., Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
- Purushu, P., N. Melcher, B. Bhagwat, and J. Woo, "Predictive analysis of financial fraud detection using azure and spark ML", Asisa Pacific Journal of Information Systems, Vol.28, No.4, 2018, pp. 308-319. https://doi.org/10.14329/apjis.2018.28.4.308
- Rumelhart, D. E., G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation", Parallel Distributed Processing, Vol.1, 1987, pp. 318-362. https://doi.org/10.7551/mitpress/4943.003.0128
- Wang, J., J. Yang, S. L. Xiao, and D. Zhou, "Face recognition based on deep learning", Human Centered Computing, 2014, pp. 812-820.
- Zheng, P., S. Yuan, X. Wu, J. Li, and A. Lu, "One-class adversarial nets for fraud detection", arXiv preprint, arXiv:1803.01798, 2018.