DOI QR코드

DOI QR Code

탄소나노튜브 필름의 표면 특성이 리튬 에어 전지의 성능에 미치는 영향

Effect of Surface Properties of Carbon Nanotube Film on the Performance of Lithium-air Batteries

  • 이아영 (숭실대학교 유기신소재파이버공학과) ;
  • 강희수 (숭실대학교 유기신소재파이버공학과) ;
  • 송현준 (숭실대학교 유기신소재파이버공학과) ;
  • 정영진 (숭실대학교 유기신소재파이버공학과)
  • Lee, A Young (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kang, Hee Soo (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Song, Hyeonjun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jeong, Youngjin (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2020.04.09
  • 심사 : 2020.04.24
  • 발행 : 2020.04.30

초록

Lithium-air (Li-air) batteries, which use oxygen as an active material for the positive electrode, have many advantages such as low weight, low pollution, and low cost compared with commercial batteries. In this study, post-treatments, such as acid and heat treatment, were conducted on carbon nanotube (CNT) films, which were fabricated via the direct spinning method, to change the surface properties of the CNT films. The post-treated CNT films were used as positive electrodes for Li-air batteries to investigate the effect of post-treatment on the performance of Li-air batteries. The raw CNT film showed a high capacity of 7000 mAh/g after 18 cycles. The acid-treated and heat-treated CNT films exhibited improved cycling performance compared with the raw CNT film. It is known that the performance of the Li-air battery is affected by the morphology and functional group of the CNT film electrode.

키워드

과제정보

본 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구 사업임(NO. NRF-2017R1A5A1015596).

참고문헌

  1. D.-W. Park, J.-W. Kim, J. Kim, and J. Lee, "Physicochemical Behaviors of Oxygen and Sulfur in Li Batteries", Appl. Chem. Eng., 2012, 23, 247-252.
  2. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-Air Battery: Promise and Challenges", J. Phys. Chem. Lett., 2010, 1, 2193-2203. https://doi.org/10.1021/jz1005384
  3. K. M. Abraham and Z. Jiang, "A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery", J. Electrochem. Soc., 1996, 143, 1-5. https://doi.org/10.1149/1.1836378
  4. J. Shui, F. Du, C. Xue, Q. Li, and L. Dai, "Vertically Aligned N-Doped Coral-like Carbon Fiber Arrays as Efficient Air Electrodes for High-Performance Nonaqueous Li-$O_2$ Batteries", ACS Nano, 2014, 8, 3015-3022. https://doi.org/10.1021/nn500327p
  5. D. Y. Kim, M. Kim, D. W. Kim, J. Suk, O. O. Park, and Y. Kang, "Flexible Binder-free Graphene Paper Cathodes for High-performance Li-$O_2$ Batteries", Carbon, 2015, 93, 625-635. https://doi.org/10.1016/j.carbon.2015.05.097
  6. D. Xu, Z. Wang, J. Xu, L. Zhang, L. Wang, and X. Zhang, "A Stable Sulfone Based Electrolyte for High Performance Rechargeable Li-$O_2$ Batteries", Chem. Commun., 2012, 48, 11674-11676. https://doi.org/10.1039/c2cc36815c
  7. B. Sun, X. Huang, S. Chen, J. Zhang, and G. Wang, "An Optimized $LiNO_3$/DMSO Electrolyte for High-performance Rechargeable Li-$O_2$ Batteries", RSC Adv., 2014, 4, 11115-11120. https://doi.org/10.1039/c3ra47372d
  8. J. M. Garcia, H. W. Horn, and J. E. Rice, "Dominant Decomposition Pathways for Ethereal Solvents in Li-$O_2$ Batteries", J. Phys. Chem. Lett., 2015, 6, 1795-1799. https://doi.org/10.1021/acs.jpclett.5b00529
  9. D. G. Kwabi, T. P. Batcho, C. V. Amanchukwu, N. O. Vitoriano, P. Hammond, C. V. Thompson, and S. H. Yang, "Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries", J. Phys. Chem. Lett., 2014, 5, 2850-2856. https://doi.org/10.1021/jz5013824
  10. M. A. Schroeder, N. Kumar, A. J. Pearse, C. Liu, S. B. Lee, G. W. Rubloff, K. Leung, and M. Noked, "The DMSO-$Li_2O_2$ Interface in the Rechargeable Li-$O_2$ Battery Cathode Theoretical and Experimental Perspectives on Stability", ACS Appl. Mater. Interfaces, 2015, 7, 11402-11411. https://doi.org/10.1021/acsami.5b01969
  11. C. Li, O. Fontaine, S. A. Freunberger, L. Johnson, S. Grugeon, S. Laruelle, P. G. Bruce, and M. Armand, "Aprotic Li-$O_2$ Battery Influence of Complexing Agents on Oxygen Reduction in an Aprotic Solvent", J. Phys. Chem. C, 2014, 118, 3393-3401. https://doi.org/10.1021/jp4093805
  12. W. Zhou, H. Zhang, H. Nie, Y. Ma, Y. Zhang, and H. Zhang, "Hierarchical Micron-Sized Mesoporous/Macroporous Graphene with Well-Tuned Surface Oxygen Chemistry for High Capacity and Cycling Stability Li-$O_2$ Battery", ACS Appl. Mater. Interfaces, 2015, 7, 3389-3397. https://doi.org/10.1021/am508513m
  13. E. N. Nasybulin, W. Xu, B. L. Mehdi, E. Thomsen, M. H. Engelhard, R. C. Masse, P. Bhattacharya, M. Gu, W. Bennett, Z. Nie, C. Wang, N. D. Browning, and J. G. Zhang, "Formation of Interfacial Layer and Long-Term Cyclability of Li-$O_2$ Batteries", ACS Appl. Mater. Interfaces, 2014, 6, 14141-14151. https://doi.org/10.1021/am503390q
  14. H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, and B. Scrocati, "An Improved High-performance Lithium-air Battery", Nat. Chem., 2012, 4, 579-585. https://doi.org/10.1038/nchem.1376
  15. Z. L. Wang, D. Xu, J. J. Xu, L. L. Zhang, and X. B. Zhang, "Graphene Oxide Gel-Derived, Free-Standing, Hierarchically Porous Carbon for High-Capacity and High-Rate Rechargeable Li-$O_2$ Batteries", Adv. Funct. Mater., 2012, 22, 3699-3705. https://doi.org/10.1002/adfm.201200403
  16. Z. Zhang, J. Bao, C. He, Y. Chen, J. Wei, and Z. Zhou, "Hierarchical Carbon-Nitrogen Architectures with Both Mesopores and Macrochannels as Excellent Cathodes for Rechargeable Li-$O_2$ Batteries", Adv. Funct. Mater., 2014, 24, 6826-6833. https://doi.org/10.1002/adfm.201401581
  17. J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W, D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu, and J. G. Zhang, "Hierarchically Porous Graphene as a LithiumAir Battery Electrode", Nano Letters, 2011, 11, 5071-5078. https://doi.org/10.1021/nl203332e
  18. G. G. Kumar, M. Christy, H. Jang, and K. S. Nahm, "Cobaltite Oxide Nanosheets Anchored Graphene Nanocomposite as an Efficient Oxygen Reduction Reaction (ORR) Catalyst for the Application of Lithium-air Batteries", J. Power Sources, 2015, 288, 451-460. https://doi.org/10.1016/j.jpowsour.2015.04.029
  19. W. Zhang, J. Zhu, H. Ang, H. Wang, H. T. Tan, D. Yang, C. Xu, N. Xiao, B. Li, W. Liu, X. Wang, H. H. Hng, and Q. Yan, "Fe-Based Metallopolymer Nanowall-Based Composites for Li-$O_2$ Battery Cathode", ACS Appl. Mater. Interfaces, 2014, 6, 7164-7170. https://doi.org/10.1021/am500158s
  20. L. Wang, M. Ara, K. Wadumesthrige, S. Salley, and K. Y. S. Ng, "Graphene Nanosheet Supported Bifunctional Catalyst for High Cycle Life Li-air Batteries", J. Power Sources, 2013, 234, 8-15. https://doi.org/10.1016/j.jpowsour.2013.01.037
  21. D. Qiu, G. Bu, B. Zhao, Z. Lin, L. Pu, L. Pan, and Y. Shi, "In situ Growth of Mesoporous NiO Nanoplates on a Graphene Matrix as Cathode Catalysts for Rechargeable Lithium-air Batteries", Mater. Lett., 2015, 141, 43-46. https://doi.org/10.1016/j.matlet.2014.11.033
  22. G. Wu, N. H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J. K. Baldwin, and P. Zelenay, "Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium-$O_2$ Battery Cathodes", ACS Nano, 2012, 6, 9764-9776. https://doi.org/10.1021/nn303275d
  23. H. D. Lim, K. Y. Park, H. Song, E. Y. Jang, H. Gwon, J. Kim, Y. H. Kim, M. D. Lima, R. O. Robles, X. Lepro, R. H. Baughman, and K. Kang, "Enhanced Power and Rechargeability of a Li-$O_2$ Battery Based on a Hierarchical-Fibril CNT Electrode", Adv. Mater., 2013, 25, 1348-1352. https://doi.org/10.1002/adma.201204018
  24. M. J. Song and M. W. Shin, "Fabrication and Characterization of Carbon Nanofiber@mesoporous Carbon Core-shell Composite for the Li-air Battery", Appl. Surface Sci., 2014, 320, 435-440. https://doi.org/10.1016/j.apsusc.2014.09.100
  25. G. Q. Zhang, J. P. Zheng, R. Liang, C. Zhang, B. Wang, M. Hendrickson, and E. J. Plichta "Lithium-Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes", J. Electrochem. Soc., 2010, 157, A953-A956. https://doi.org/10.1149/1.3446852
  26. Y. Li, J. Wang, X. Li, J. Liu, D. Geng, J. Yang, R. Li, and X. Sun, "Nitrogen-doped Carbon Nanotubes as Cathode For Lithium-air Batteries", Electrochem. Commun., 2012, 13, 668-672. https://doi.org/10.1016/j.elecom.2011.04.004
  27. C. K. Lee and Y. J. Park, "Polyimide-wrapped Carbon Nanotube Electrodes for Long Cycle Li-air Batteries", Chem. Commun., 2015, 51, 1210-1213. https://doi.org/10.1039/C4CC08542F
  28. R. Carter, L. Oakes, A. P. Cohn, J. Holzgrafe, H. F. Zarick, S. Chatterjee, R. Bardhan, and C. L. Pint, "Solution Assembled Single-Walled Carbon Nanotube Foams: Superior Performance in Supercapacitors, Lithium-Ion, and Lithium-Air Batteries", J. Phys. Chem. C, 2014, 118, 20137-20151. https://doi.org/10.1021/jp5054502
  29. V. S. Bryantsev, J. Uddin, V. Giordani, W. Walker, D. Addison, and G. V. Chase, "The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries", J. Electrochem. Soc., 2013, 160, A160-A171. https://doi.org/10.1149/2.027302jes
  30. J. Uddin, V. S. Bryantsev, V. Giordani, W. Walker, G. V. Chase, and D. Addison, "Lithium Nitrate as Regenerable SEI Stabilizing Agent for Rechargeable Li/$O_2$ Batteries", J. Phys. Chem. Lett., 2013, 4, 3760-3765. https://doi.org/10.1021/jz402025n
  31. R. S. Assary, J. Lu, P. Du, X. Luo, X. Zhang, Y. Ren, L. A. Curtiss, and K. Amine, "The Effect of Oxygen Crossover on the Anode of a Li-$O_2$ Battery Using an Ether-Based Solvent Insights from Experimental and Computational Studies", ChemSusChem Commun., 2013, 6, 51-55. https://doi.org/10.1002/cssc.201200810
  32. W. J. Kwak, K. C. Lau, C. D. Shin, K. Amine, L. A. Curtiss, and Y. K. Sun, "$AMO_2C$/Carbon Nanotube Composite Cathode for Lithium-Oxygen Batteries with High Energy Efficiency and Long Cycle Life", ACS Nano, 2015, 9, 4129-4137. https://doi.org/10.1021/acsnano.5b00267
  33. R. Mi, S. Li, X. Liu, L. Liu, Y. Li, J. Mei, Y. Chen, H. Liu, H. Wang, H. Yana, and W. M. Lau, "Electrochemical Performance of Binder-free Carbon Nanotubes with Different Nitrogen Amounts Grown on the Nickel Foam as Cathodes in Li-$O_2$ Batteries", J. Mater. Chem. A, 2014, 2, 18746-18753. https://doi.org/10.1039/C4TA03457K
  34. J. Li, Y. Zhao, M. Zou, C. Wu, Z. Huang, and L. Guan, "An Effective Integrated Design for Enhanced Cathodes of Ni Foam-Supported Pt/Carbon Nanotubes for Li-$O_2$ Batteries", ACS Appl. Mater. Interfaces, 2014, 6, 12479-12485. https://doi.org/10.1021/am502411y
  35. W. Walker, V. Giordani, J. Uddin, V. S. Bryantsev, G. V. Chase, and D. Addison, "A Rechargeable Li-$O_2$ Battery Using a Lithium Nitrate N,N-Dimethylacetamide Electrolyte", J. Am. Chem. Soc., 2013, 135, 2076-2079. https://doi.org/10.1021/ja311518s
  36. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, and R. Saito, "Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes", Carbon, 2002, 40, 2043-2061. https://doi.org/10.1016/S0008-6223(02)00066-0
  37. S. Huang, W. Fan, X. Guo, F. Meng, and X. Liu, "Positive Role of Surface Defects on Carbon Nanotube Cathodes in Overpotential and Capacity Retention of Rechargeable Lithium-Oxygen Batteries", ACS Appl. Mater. Interfaces, 2014, 6, 21567-21575. https://doi.org/10.1021/am506564n
  38. D. M. Itkis, D. A. Semenenko, E. Yu. Kataev, A. I. Belova, V. S. Neudachina, A. P. Sirotina, M. Havecker, D. Teschner, K. G. Axel, P. Dudin, A. Barinov, E. A. Goodilin, S. H. Yang, and L. V. Yashina, "Reactivity of Carbon in Lithium-Oxygen Battery Positive Electrodes", Nano Letters, 2013, 13, 4697-4701. https://doi.org/10.1021/nl4021649
  39. E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, and H. R. Byon "Promoting Formation of Noncrystalline $Li_2O_2$ in the Li-$O_2$ Battery with $RuO_2$ Nanoparticles", Nano Letter, 2013, 13, 4679-4684. https://doi.org/10.1021/nl4020952