DOI QR코드

DOI QR Code

The Tumor Suppressor, p53, Negatively Regulates Non-Canonical NF-κB Signaling through miRNA-Induced Silencing of NF-κB-Inducing Kinase

  • Jang, Hanbit (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Seulki (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jaehoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Jong Hwan (Personalized Genomic Medicine Research Center, KRIBB) ;
  • Kim, Seon-Young (Personalized Genomic Medicine Research Center, KRIBB) ;
  • Cho, Sayeon (College of Pharmacy, Chung-Ang University) ;
  • Park, Sung Goo (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Byoung Chul (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Sunhong (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jeong-Hoon (Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2019.10.22
  • 심사 : 2019.11.27
  • 발행 : 2020.01.31

초록

NF-κB signaling through both canonical and non-canonical pathways plays a central role in immune responses and inflammation. NF-κB-inducing kinase (NIK) stabilization is a key step in activation of the non-canonical pathway and its dysregulation implicated in various hematologic malignancies. The tumor suppressor, p53, is an established cellular gatekeeper of proliferation. Abnormalities of the TP53 gene have been detected in more than half of all human cancers. While the non-canonical NF-κB and p53 pathways have been explored for several decades, no studies to date have documented potential cross-talk between these two cancer-related mechanisms. Here, we demonstrate that p53 negatively regulates NIK in an miRNA-dependent manner. Overexpression of p53 decreased the levels of NIK, leading to inhibition of the non-canonical NF-κB pathway. Conversely, its knockdown led to increased levels of NIK, IKKα phosphorylation, and p100 processing. Additionally, miR-34b induced by nutlin-3 directly targeted the coding sequences (CDS) of NIK. Treatment with anti-miR-34b-5p augmented NIK levels and subsequent non-canonical NF-κB signaling. Our collective findings support a novel cross-talk mechanism between non-canonical NF-κB and p53.

키워드

참고문헌

  1. Balaji, S., Ahmed, M., Lorence, E., Yan, F., Nomie, K., and Wang, M. (2018). $NF-{\kappa}B$ signaling and its relevance to the treatment of mantle cell lymphoma. J. Hematol. Oncol. 11, 83. https://doi.org/10.1186/s13045-018-0621-5
  2. Bartel, D.P. (2018). Metazoan MicroRNAs. Cell 173, 20-51. https://doi.org/10.1016/j.cell.2018.03.006
  3. Beg, M.S., Brenner, A.J., Sachdev, J., Borad, M., Kang, Y.K., Stoudemire, J., Smith, S., Bader, A.G., Kim, S., and Hong, D.S. (2017). Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs 35, 180-188. https://doi.org/10.1007/s10637-016-0407-y
  4. Benitez, J.A., Ma, J., D'Antonio, M., Boyer, A., Camargo, M.F., Zanca, C., Kelly, S., Khodadadi-Jamayran, A., Jameson, N.M., Andersen, M., et al. (2017). PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat. Commun. 8, 15223. https://doi.org/10.1038/ncomms15223
  5. Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486. https://doi.org/10.1038/nature08170
  6. Choi, J.S., Park, B.C., Chi, S.W., Bae, K.H., Kim, S., Cho, S., Son, W.C., Myung, P.K., Kim, J.H., and Park, S.G. (2014). HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget 5, 10084-10099. https://doi.org/10.18632/oncotarget.2459
  7. Dice, J.F. (2007). Chaperone-mediated autophagy. Autophagy 3, 295-299. https://doi.org/10.4161/auto.4144
  8. Forman, J.J., Legesse-Miller, A., and Coller, H.A. (2008). A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. U. S. A. 105, 14879-14884. https://doi.org/10.1073/pnas.0803230105
  9. Ha, M. and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509-524. https://doi.org/10.1038/nrm3838
  10. Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193-199. https://doi.org/10.1038/cdd.2009.56
  11. Hermeking, H. (2012). MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer 12, 613-626. https://doi.org/10.1038/nrc3318
  12. Huang, W.C., Ju, T.K., Hung, M.C., and Chen, C.C. (2007). Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol. Cell 26, 75-87. https://doi.org/10.1016/j.molcel.2007.02.019
  13. Jin, Y., Chen, Z., Liu, X., and Zhou, X. (2013). Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol. Biol. 936, 117-127. https://doi.org/10.1007/978-1-62703-083-0_10
  14. Kastenhuber, E.R. and Lowe, S.W. (2017). Putting p53 in context. Cell 170, 1062-1078. https://doi.org/10.1016/j.cell.2017.08.028
  15. Kawauchi, K., Araki, K., Tobiume, K., and Tanaka, N. (2009). Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc. Natl. Acad. Sci. U. S. A. 106, 3431-3436. https://doi.org/10.1073/pnas.0813210106
  16. Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W.J., Van Wier, S., Tiedemann, R., Shi, C.X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131-144. https://doi.org/10.1016/j.ccr.2007.07.003
  17. Kendellen, M.F., Bradford, J.W., Lawrence, C.L., Clark, K.S., and Baldwin, A.S. (2014). Canonical and non-canonical $NF-{\kappa}B$ signaling promotes breast cancer tumor-initiating cells. Oncogene 33, 1297-1305. https://doi.org/10.1038/onc.2013.64
  18. Kim, J.S., Kim, E.J., Lee, S., Tan, X., Liu, X., Park, S., Kang, K., Yoon, J.S., Ko, Y.H., Kurie, J.M., et al. (2019). MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp. Mol. Med. 51, 9. https://doi.org/10.1038/s12276-018-0203-1
  19. Kim, N.H., Kim, H.S., Kim, N.G., Lee, I., Choi, H.S., Li, X.Y., Kang, S.E., Cha, S.Y., Ryu, J.K., Na, J.M., et al. (2011). p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci. Signal. 4, ra71. https://doi.org/10.1126/scisignal.2001744
  20. Leucci, E., Cocco, M., Onnis, A., De Falco, G., van Cleef, P., Bellan, C., van Rijk, A., Nyagol, J., Byakika, B., Lazzi, S., et al. (2008). MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J. Pathol. 216, 440-450. https://doi.org/10.1002/path.2410
  21. Lin, J., Chen, J., Elenbaas, B., and Levine, A.J. (1994). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235-1246. https://doi.org/10.1101/gad.8.10.1235
  22. Lin, X., Mu, Y., Cunningham, E.T., Jr., Marcu, K.B., Geleziunas, R., and Greene, W.C. (1998). Molecular determinants of NF-kappaB-inducing kinase action. Mol. Cell Biol. 18, 5899-5907. https://doi.org/10.1128/MCB.18.10.5899
  23. Mayo, M.W., Madrid, L.V., Westerheide, S.D., Jones, D.R., Yuan, X.J., Baldwin, A.S., Jr., and Whang, Y.E. (2002). PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem. 277, 11116-11125. https://doi.org/10.1074/jbc.M108670200
  24. O'Keefe, K., Li, H., and Zhang, Y. (2003). Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol. Cell Biol. 23, 6396-6405. https://doi.org/10.1128/MCB.23.18.6396-6405.2003
  25. Onder, T.T., Gupta, P.B., Mani, S.A., Yang, J., Lander, E.S., and Weinberg, R.A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645-3654. https://doi.org/10.1158/0008-5472.CAN-07-2938
  26. Otto, C., Giefing, M., Massow, A., Vater, I., Gesk, S., Schlesner, M., Richter, J., Klapper, W., Hansmann, M.L., Siebert, R., et al. (2012). Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br. J. Haematol. 157, 702-708. https://doi.org/10.1111/j.1365-2141.2012.09113.x
  27. Pigazzi, M., Manara, E., Baron, E., and Basso, G. (2009). miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 69, 2471-2478. https://doi.org/10.1158/0008-5472.CAN-08-3404
  28. Rahal, R., Frick, M., Romero, R., Korn, J.M., Kridel, R., Chan, F.C., Meissner, B., Bhang, H.E., Ruddy, D., Kauffmann, A., et al. (2014). Pharmacological and genomic profiling identifies $NF-{\kappa}B$-targeted treatment strategies for mantle cell lymphoma. Nat. Med. 20, 87-92. https://doi.org/10.1038/nm.3435
  29. Ravi, R., Mookerjee, B., van Hensbergen, Y., Bedi, G.C., Giordano, A., El-Deiry, W.S., Fuchs, E.J., and Bedi, A. (1998). p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res. 58, 4531-4536.
  30. Rocha, S., Campbell, K.J., and Perkins, N.D. (2003). p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Mol. Cell 12, 15-25. https://doi.org/10.1016/S1097-2765(03)00223-5
  31. Slabakova, E., Culig, Z., Remsik, J., and Soucek, K. (2017). Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 8, e3100. https://doi.org/10.1038/cddis.2017.495
  32. Sullivan, K.D., Galbraith, M.D., Andrysik, Z., and Espinosa, J.M. (2018). Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133-143. https://doi.org/10.1038/cdd.2017.174
  33. Sun, S.C. (2017). The non-canonical $NF-{\kappa}B$ pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545-558. https://doi.org/10.1038/nri.2017.52
  34. Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature 460, 529-533. https://doi.org/10.1038/nature08199
  35. Tay, Y., Zhang, J., Thomson, A.M., Lim, B., and Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124-1128. https://doi.org/10.1038/nature07299
  36. Vallabhapurapu, S. and Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693-733. https://doi.org/10.1146/annurev.immunol.021908.132641
  37. Van Roosbroeck, K. and Calin, G.A. (2017). Cancer hallmarks and MicroRNAs: the therapeutic connection. Adv. Cancer Res. 135, 119-149. https://doi.org/10.1016/bs.acr.2017.06.002
  38. Vazquez-Santillan, K., Melendez-Zajgla, J., Jimenez-Hernandez, L.E., Gaytan-Cervantes, J., Munoz-Galindo, L., Pina-Sanchez, P., Martinez-Ruiz, G., Torres, J., Garcia-Lopez, P., Gonzalez-Torres, C., et al. (2016). NF-kappaΒ-inducing kinase regulates stem cell phenotype in breast cancer. Sci. Rep. 6, 37340. https://doi.org/10.1038/srep37340
  39. Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
  40. Walker, E.J., Zhang, C., Castelo-Branco, P., Hawkins, C., Wilson, W., Zhukova, N., Alon, N., Novokmet, A., Baskin, B., Ray, P., et al. (2012). Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. Cancer Res. 72, 636-644. https://doi.org/10.1158/0008-5472.CAN-11-2266
  41. Yamada, T., Mitani, T., Yorita, K., Uchida, D., Matsushima, A., Iwamasa, K., Fujita, S., and Matsumoto, M. (2000). Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-kappa B-inducing kinase. J. Immunol. 165, 804-812. https://doi.org/10.4049/jimmunol.165.2.804
  42. Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Kagami, Y., Tsutsumi, A., Matsuda, Y., Sato-Otsubo, A., Muto, S., Utsunomiya, A., et al. (2012). Polycomb-mediated loss of miR-31 activates NIK-dependent $NF-{\kappa}B$ pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121-135. https://doi.org/10.1016/j.ccr.2011.12.015
  43. Yamaguchi, N., Ito, T., Azuma, S., Ito, E., Honma, R., Yanagisawa, Y., Nishikawa, A., Kawamura, M., Imai, J., Watanabe, S., et al. (2009). Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci. 100, 1668-1674. https://doi.org/10.1111/j.1349-7006.2009.01228.x
  44. Yamamoto, M., Ito, T., Shimizu, T., Ishida, T., Semba, K., Watanabe, S., Yamaguchi, N., and Inoue, J. (2010). Epigenetic alteration of the $NF-{\kappa}B$-inducing kinase (NIK) gene is involved in enhanced NIK expression in basal-like breast cancer. Cancer Sci. 101, 2391-2397. https://doi.org/10.1111/j.1349-7006.2010.01685.x
  45. Yu, X., Riley, T., and Levine, A.J. (2009). The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 276, 2201-2212. https://doi.org/10.1111/j.1742-4658.2009.06949.x
  46. Zhang, Q., Lenardo, M.J., and Baltimore, D. (2017). 30 years of $NF-{\kappa}B$: a blossoming of relevance to human pathobiology. Cell 168, 37-57. https://doi.org/10.1016/j.cell.2016.12.012
  47. Zhang, S., Shan, C., Kong, G., Du, Y., Ye, L., and Zhang, X. (2012). MicroRNA-520e suppresses growth of hepatoma cells by targeting the $NF-{\kappa}B$-inducing kinase (NIK). Oncogene 31, 3607-3620. https://doi.org/10.1038/onc.2011.523

피인용 문헌

  1. miR-34b-5p promotes renal cell inflammation and apoptosis by inhibiting aquaporin-2 in sepsis-induced acute kidney injury vol.43, pp.1, 2020, https://doi.org/10.1080/0886022x.2021.1871922
  2. Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18 vol.44, pp.1, 2020, https://doi.org/10.14348/molcells.2020.0169