참고문헌
-
Balaji, S., Ahmed, M., Lorence, E., Yan, F., Nomie, K., and Wang, M. (2018).
$NF-{\kappa}B$ signaling and its relevance to the treatment of mantle cell lymphoma. J. Hematol. Oncol. 11, 83. https://doi.org/10.1186/s13045-018-0621-5 - Bartel, D.P. (2018). Metazoan MicroRNAs. Cell 173, 20-51. https://doi.org/10.1016/j.cell.2018.03.006
- Beg, M.S., Brenner, A.J., Sachdev, J., Borad, M., Kang, Y.K., Stoudemire, J., Smith, S., Bader, A.G., Kim, S., and Hong, D.S. (2017). Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs 35, 180-188. https://doi.org/10.1007/s10637-016-0407-y
- Benitez, J.A., Ma, J., D'Antonio, M., Boyer, A., Camargo, M.F., Zanca, C., Kelly, S., Khodadadi-Jamayran, A., Jameson, N.M., Andersen, M., et al. (2017). PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat. Commun. 8, 15223. https://doi.org/10.1038/ncomms15223
- Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486. https://doi.org/10.1038/nature08170
- Choi, J.S., Park, B.C., Chi, S.W., Bae, K.H., Kim, S., Cho, S., Son, W.C., Myung, P.K., Kim, J.H., and Park, S.G. (2014). HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization. Oncotarget 5, 10084-10099. https://doi.org/10.18632/oncotarget.2459
- Dice, J.F. (2007). Chaperone-mediated autophagy. Autophagy 3, 295-299. https://doi.org/10.4161/auto.4144
- Forman, J.J., Legesse-Miller, A., and Coller, H.A. (2008). A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl. Acad. Sci. U. S. A. 105, 14879-14884. https://doi.org/10.1073/pnas.0803230105
- Ha, M. and Kim, V.N. (2014). Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509-524. https://doi.org/10.1038/nrm3838
- Hermeking, H. (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ. 17, 193-199. https://doi.org/10.1038/cdd.2009.56
- Hermeking, H. (2012). MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat. Rev. Cancer 12, 613-626. https://doi.org/10.1038/nrc3318
- Huang, W.C., Ju, T.K., Hung, M.C., and Chen, C.C. (2007). Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol. Cell 26, 75-87. https://doi.org/10.1016/j.molcel.2007.02.019
- Jin, Y., Chen, Z., Liu, X., and Zhou, X. (2013). Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol. Biol. 936, 117-127. https://doi.org/10.1007/978-1-62703-083-0_10
- Kastenhuber, E.R. and Lowe, S.W. (2017). Putting p53 in context. Cell 170, 1062-1078. https://doi.org/10.1016/j.cell.2017.08.028
- Kawauchi, K., Araki, K., Tobiume, K., and Tanaka, N. (2009). Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc. Natl. Acad. Sci. U. S. A. 106, 3431-3436. https://doi.org/10.1073/pnas.0813210106
- Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W.J., Van Wier, S., Tiedemann, R., Shi, C.X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131-144. https://doi.org/10.1016/j.ccr.2007.07.003
-
Kendellen, M.F., Bradford, J.W., Lawrence, C.L., Clark, K.S., and Baldwin, A.S. (2014). Canonical and non-canonical
$NF-{\kappa}B$ signaling promotes breast cancer tumor-initiating cells. Oncogene 33, 1297-1305. https://doi.org/10.1038/onc.2013.64 - Kim, J.S., Kim, E.J., Lee, S., Tan, X., Liu, X., Park, S., Kang, K., Yoon, J.S., Ko, Y.H., Kurie, J.M., et al. (2019). MiR-34a and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp. Mol. Med. 51, 9. https://doi.org/10.1038/s12276-018-0203-1
- Kim, N.H., Kim, H.S., Kim, N.G., Lee, I., Choi, H.S., Li, X.Y., Kang, S.E., Cha, S.Y., Ryu, J.K., Na, J.M., et al. (2011). p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci. Signal. 4, ra71. https://doi.org/10.1126/scisignal.2001744
- Leucci, E., Cocco, M., Onnis, A., De Falco, G., van Cleef, P., Bellan, C., van Rijk, A., Nyagol, J., Byakika, B., Lazzi, S., et al. (2008). MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J. Pathol. 216, 440-450. https://doi.org/10.1002/path.2410
- Lin, J., Chen, J., Elenbaas, B., and Levine, A.J. (1994). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235-1246. https://doi.org/10.1101/gad.8.10.1235
- Lin, X., Mu, Y., Cunningham, E.T., Jr., Marcu, K.B., Geleziunas, R., and Greene, W.C. (1998). Molecular determinants of NF-kappaB-inducing kinase action. Mol. Cell Biol. 18, 5899-5907. https://doi.org/10.1128/MCB.18.10.5899
- Mayo, M.W., Madrid, L.V., Westerheide, S.D., Jones, D.R., Yuan, X.J., Baldwin, A.S., Jr., and Whang, Y.E. (2002). PTEN blocks tumor necrosis factor-induced NF-kappa B-dependent transcription by inhibiting the transactivation potential of the p65 subunit. J. Biol. Chem. 277, 11116-11125. https://doi.org/10.1074/jbc.M108670200
- O'Keefe, K., Li, H., and Zhang, Y. (2003). Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol. Cell Biol. 23, 6396-6405. https://doi.org/10.1128/MCB.23.18.6396-6405.2003
- Onder, T.T., Gupta, P.B., Mani, S.A., Yang, J., Lander, E.S., and Weinberg, R.A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645-3654. https://doi.org/10.1158/0008-5472.CAN-07-2938
- Otto, C., Giefing, M., Massow, A., Vater, I., Gesk, S., Schlesner, M., Richter, J., Klapper, W., Hansmann, M.L., Siebert, R., et al. (2012). Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br. J. Haematol. 157, 702-708. https://doi.org/10.1111/j.1365-2141.2012.09113.x
- Pigazzi, M., Manara, E., Baron, E., and Basso, G. (2009). miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 69, 2471-2478. https://doi.org/10.1158/0008-5472.CAN-08-3404
-
Rahal, R., Frick, M., Romero, R., Korn, J.M., Kridel, R., Chan, F.C., Meissner, B., Bhang, H.E., Ruddy, D., Kauffmann, A., et al. (2014). Pharmacological and genomic profiling identifies
$NF-{\kappa}B$ -targeted treatment strategies for mantle cell lymphoma. Nat. Med. 20, 87-92. https://doi.org/10.1038/nm.3435 - Ravi, R., Mookerjee, B., van Hensbergen, Y., Bedi, G.C., Giordano, A., El-Deiry, W.S., Fuchs, E.J., and Bedi, A. (1998). p53-mediated repression of nuclear factor-kappaB RelA via the transcriptional integrator p300. Cancer Res. 58, 4531-4536.
- Rocha, S., Campbell, K.J., and Perkins, N.D. (2003). p53- and Mdm2-independent repression of NF-kappa B transactivation by the ARF tumor suppressor. Mol. Cell 12, 15-25. https://doi.org/10.1016/S1097-2765(03)00223-5
- Slabakova, E., Culig, Z., Remsik, J., and Soucek, K. (2017). Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 8, e3100. https://doi.org/10.1038/cddis.2017.495
- Sullivan, K.D., Galbraith, M.D., Andrysik, Z., and Espinosa, J.M. (2018). Mechanisms of transcriptional regulation by p53. Cell Death Differ. 25, 133-143. https://doi.org/10.1038/cdd.2017.174
-
Sun, S.C. (2017). The non-canonical
$NF-{\kappa}B$ pathway in immunity and inflammation. Nat. Rev. Immunol. 17, 545-558. https://doi.org/10.1038/nri.2017.52 - Suzuki, H.I., Yamagata, K., Sugimoto, K., Iwamoto, T., Kato, S., and Miyazono, K. (2009). Modulation of microRNA processing by p53. Nature 460, 529-533. https://doi.org/10.1038/nature08199
- Tay, Y., Zhang, J., Thomson, A.M., Lim, B., and Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124-1128. https://doi.org/10.1038/nature07299
- Vallabhapurapu, S. and Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693-733. https://doi.org/10.1146/annurev.immunol.021908.132641
- Van Roosbroeck, K. and Calin, G.A. (2017). Cancer hallmarks and MicroRNAs: the therapeutic connection. Adv. Cancer Res. 135, 119-149. https://doi.org/10.1016/bs.acr.2017.06.002
- Vazquez-Santillan, K., Melendez-Zajgla, J., Jimenez-Hernandez, L.E., Gaytan-Cervantes, J., Munoz-Galindo, L., Pina-Sanchez, P., Martinez-Ruiz, G., Torres, J., Garcia-Lopez, P., Gonzalez-Torres, C., et al. (2016). NF-kappaΒ-inducing kinase regulates stem cell phenotype in breast cancer. Sci. Rep. 6, 37340. https://doi.org/10.1038/srep37340
- Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
- Walker, E.J., Zhang, C., Castelo-Branco, P., Hawkins, C., Wilson, W., Zhukova, N., Alon, N., Novokmet, A., Baskin, B., Ray, P., et al. (2012). Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. Cancer Res. 72, 636-644. https://doi.org/10.1158/0008-5472.CAN-11-2266
- Yamada, T., Mitani, T., Yorita, K., Uchida, D., Matsushima, A., Iwamasa, K., Fujita, S., and Matsumoto, M. (2000). Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-kappa B-inducing kinase. J. Immunol. 165, 804-812. https://doi.org/10.4049/jimmunol.165.2.804
-
Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Kagami, Y., Tsutsumi, A., Matsuda, Y., Sato-Otsubo, A., Muto, S., Utsunomiya, A., et al. (2012). Polycomb-mediated loss of miR-31 activates NIK-dependent
$NF-{\kappa}B$ pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121-135. https://doi.org/10.1016/j.ccr.2011.12.015 - Yamaguchi, N., Ito, T., Azuma, S., Ito, E., Honma, R., Yanagisawa, Y., Nishikawa, A., Kawamura, M., Imai, J., Watanabe, S., et al. (2009). Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci. 100, 1668-1674. https://doi.org/10.1111/j.1349-7006.2009.01228.x
-
Yamamoto, M., Ito, T., Shimizu, T., Ishida, T., Semba, K., Watanabe, S., Yamaguchi, N., and Inoue, J. (2010). Epigenetic alteration of the
$NF-{\kappa}B$ -inducing kinase (NIK) gene is involved in enhanced NIK expression in basal-like breast cancer. Cancer Sci. 101, 2391-2397. https://doi.org/10.1111/j.1349-7006.2010.01685.x - Yu, X., Riley, T., and Levine, A.J. (2009). The regulation of the endosomal compartment by p53 the tumor suppressor gene. FEBS J. 276, 2201-2212. https://doi.org/10.1111/j.1742-4658.2009.06949.x
-
Zhang, Q., Lenardo, M.J., and Baltimore, D. (2017). 30 years of
$NF-{\kappa}B$ : a blossoming of relevance to human pathobiology. Cell 168, 37-57. https://doi.org/10.1016/j.cell.2016.12.012 -
Zhang, S., Shan, C., Kong, G., Du, Y., Ye, L., and Zhang, X. (2012). MicroRNA-520e suppresses growth of hepatoma cells by targeting the
$NF-{\kappa}B$ -inducing kinase (NIK). Oncogene 31, 3607-3620. https://doi.org/10.1038/onc.2011.523
피인용 문헌
- miR-34b-5p promotes renal cell inflammation and apoptosis by inhibiting aquaporin-2 in sepsis-induced acute kidney injury vol.43, pp.1, 2020, https://doi.org/10.1080/0886022x.2021.1871922
- Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18 vol.44, pp.1, 2020, https://doi.org/10.14348/molcells.2020.0169