References
- Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association, 88, 669-679. https://doi.org/10.1080/01621459.1993.10476321
- Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler, The American Statistician, 46, 167-174. https://doi.org/10.2307/2685208
- Catalano, P. J. and Ryan, L. M. (1992). Bivariate latent variable models for clustered discrete and continuous outcomes. Journal of the American Statistical Association, 87, 651-658. https://doi.org/10.1080/01621459.1992.10475264
- Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). Deviance information criterion for missing data models, Bayesian Analysis, 1, 651-674. https://doi.org/10.1214/06-BA122
- Chen, M. H., Dey, D. K., and Shao, Q. M. (1999). A new skewed link model for dichotomous quantal response data, Journal of the American Statistical Association, 94, 1172-1186. https://doi.org/10.1080/01621459.1999.10473872
- Chen, M. H., Dey, D. K., and Shao, Q. M. (2001). Bayesian analysis of binary data using skewed logit models, Calcutta Statistical Association Bulletin, 51, 12-30.
- Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335. https://doi.org/10.2307/2684568
- De Iorio, M., Muller, P., Rosner, G. L., and MacEachern, S. N. (2004). An ANOVA model for dependent random measures, Journal of the American Statistical Association, 99, 205-215. https://doi.org/10.1198/016214504000000205
- Dunson, D. B. (2000). Bayesian latent variable models for clustered mixed outcomes, Journal of the Royal Statistical Society: Series B, 62, 355-366. https://doi.org/10.1111/1467-9868.00236
- Dunson, D. B., Chen, Z., and Harry, J. (2003). A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes, Biometrics, 59, 521-530. https://doi.org/10.1111/1541-0420.00062
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2014). Bayesian Data Analysis, CRC Press, New York.
- Haario, H., Saksman, E., and Tamminen, J. (2005). Componentwise adaptation for high dimensional MCMC, Computational Statistics, 20, 265-273. https://doi.org/10.1007/BF02789703
- Hwang, B. S. and Pennell, M. L. (2014). Semiparametric Bayesian joint modeling of a binary and continuous outcome with applications in toxicological risk assessment, Statistics in Medicine, 33, 1162-1175. https://doi.org/10.1002/sim.6007
- Hwang, B. S. and Pennell, M. L. (2018). Semiparametric Bayesian joint modeling of clustered binary and continuous outcomes with informative cluster size in developmental toxicity assessment, Environmetrics, 29, e2526, 1-15.
- Kim, S. B. and Hwang, B. S. (2019). A Bayesian skewed logit model for high-risk drinking data, Journal of the Korean Data & Information Science Society, 30, 335-348. https://doi.org/10.7465/jkdi.2019.30.2.335
- Li, E., Zhang, D., and Davidian, M. (2004). Conditional estimation for generalized linear models when covariates are subject-specific parameters in a mixed model for longitudinal measurements, Biometrics, 60, 1-7. https://doi.org/10.1111/j.0006-341X.2004.00170.x
- MacEachern, S. N. (1999). Dependent nonparametric process. In ASA Proceeding of the Section on Bayesian Statistical Science, American Statistical Association: Alexandria, VA.
- McCulloch, C. (2008). Joint modelling of mixed outcome types using latent variables, Statistical Methods in Medical Research, 17, 53-73. https://doi.org/10.1177/0962280207081240
- Regan, M. M. and Catalano, P. J. (1999). Likelihood models for clustered binary and continuous outcomes: application to developmental toxicology, Biometrics, 55, 760-768. https://doi.org/10.1111/j.0006-341X.1999.00760.x
- Sethuraman, J. (1994). A constructive definition of Dirichlet priors, Statistica Sinica, 4, 639-650.
- Spiegelhalter, D. J., Best, N. G., Carline, B. P., and Van Der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society: Series B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353