DOI QR코드

DOI QR Code

Two Dimensional (2D) Nanomaterials based Composite Membrane for Desalination

2차원 나노재료 기반 복합막을 이용한 해수담수화

  • Lee, Yu Kyung (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 이유경 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2020.04.13
  • Accepted : 2020.04.26
  • Published : 2020.04.30

Abstract

Growing industrialization and climate change lead to the huge demand for clean drinking water. Desalination of sea water by membrane separation process is one of the alternative and economically viable methods to fulfil the demand for water. In the membrane separation process, the presence of 2D materials enhances the performance of membrane by facilitating the water permeation, salt rejection, flux rate, and selectivity compared to the traditional reverse osmosis thin-film-composite membranes. In this review, composite membranes with different kinds of 2D materials are discussed on the basis of materials synthesis, characterization and desalination process.

산업화와 기후 변화는 깨끗한 식수에 대한 수요 증가를 초래하였다. 막분리공정을 이용한 해수담수화는 물의 수요에 대한 요구를 채울 수 있는 경제적으로 실현 가능한 대안 중 하나이다. 막분리공정에서 2차원 재료들은 기존 역삼투분리막(reverse osmosis membrane) 기반의 폴리아마이드 박막복합막(TFC-PA)과 비교하였을 때 막의 강도를 높여주고 투수성을 용이하게 하며 높은 염제거율 및 높은 선속률과 선택성을 보여준다. 이 리뷰 논문에서는 재료, 합성, 특징, 해수담수화 과정을 기반으로 다양한 2차원 재료로 구성된 복합막들을 소개하고 있다.

Keywords

References

  1. N. Misdan, W. J. Lau, and A. F. Ismail, "Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane - current development, challenges and future prospects", Desalination, 287, 228 (2012). https://doi.org/10.1016/j.desal.2011.11.001
  2. A. P. Rao, N. V. Desai, and R. Rangarajan, "Interfacially synthesized thin film composite RO membranes for seawater desalination", J. Membr. Sci., 124, 263 (1997). https://doi.org/10.1016/S0376-7388(96)00252-9
  3. D. W. Kim, "Review on graphene oxide-based nanofiltration membrane", Membr. J., 29, 130 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.130
  4. H. Oh, J. H. Lee, and R. Patel, "Removal of heavy metal ions from wastewater by polyacrylonitrile based fibers: A review", Membr. J., 29, 123 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.123
  5. B. W. Lee, S. Lee, and R. Patel, "Effect of antifouling composite membrane on membrane bioreactor: A review", Membr. J., 30, 1 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.1
  6. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, "Science and technology for water purification in the coming decades", Nature, 452, 301 (2008). https://doi.org/10.1038/nature06599
  7. S. C. O'Hern, C. A. Stewart, M. S. H. Boutilier, J.-C. Idrobo, S. Bhaviripudi, S. K. Das, J. Kong, T. Laoui, M. Atieh, and R. Karnik, "Selective molecular transport through intrinsic defects in a single layer of CVD graphene", ACS Nano, 6, 10130 (2012). https://doi.org/10.1021/nn303869m
  8. E. N. Wang and R. Karnik, "Graphene cleans up water", Nat. Nanotechnol., 7, 552 (2012). https://doi.org/10.1038/nnano.2012.153
  9. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/B917103G
  10. Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z.-Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y. W. Zhang, Y. Shi, and X. Wang, "Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering", Nat. Commun., 5, 5290 (2014). https://doi.org/10.1038/ncomms6290
  11. D. Cohen-Tanugi and J. C. Grossman, "Water desalination across nanoporous graphene", Nano Letters, 12, 3602 (2012). https://doi.org/10.1021/nl3012853
  12. E. Y. M. Ang, T. Y. Ng, J. Yeo, Z. Liu, and K. R. Geethalakshmi, "Free-standing graphene slit membrane for enhanced desalination", Carbon, 110, 350 (2016). https://doi.org/10.1016/j.carbon.2016.09.043
  13. S. C. O'Hern, D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik, "Nanofiltration across defect-sealed nanoporous monolayer graphene", Nano Letters, 15, 3254 (2015). https://doi.org/10.1021/acs.nanolett.5b00456
  14. Y. Han, Z. Xu, and C. Gao, "Ultrathin graphene nanofiltration membrane for water purification", Adv. Funct. Mater., 23, 3693 (2013). https://doi.org/10.1002/adfm.201202601
  15. J. P. Rourke, P. A. Pandey, J. J. Moore, M. Bates, I. A. Kinloch, R. J. Young, and N. R. Wilson, "The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets", Angew. Chem. Int. Ed., 50, 3173 (2011). https://doi.org/10.1002/anie.201007520
  16. F. M. Kafiah, Z. Khan, A. Ibrahim, R. Karnik, M. Atieh, and T. Laoui, "Monolayer graphene transfer onto polypropylene and polyvinylidenedifluoride microfiltration membranes for water desalination", Desalination, 388, 29 (2016). https://doi.org/10.1016/j.desal.2016.02.027
  17. W. Choi, J. Choi, J. Bang, and J. H. Lee, "Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications", ACS Appl. Mater. Interfaces, 5, 12510 (2013). https://doi.org/10.1021/am403790s
  18. M. Hu and B. Mi, "Enabling graphene oxide nanosheets as water separation membranes", Environ. Sci. Technol., 47, 3715 (2013). https://doi.org/10.1021/es400571g
  19. K. Huang, G. Liu, J. Shen, Z. Chu, H. Zhou, X. Gu, W. Jin, and N. Xu, "High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates", Adv. Funct. Mater., 25, 5809 (2015). https://doi.org/10.1002/adfm.201502205
  20. H. Liu, H. Wang, and X. Zhang, "Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification", Adv. Mater., 27, 249 (2015). https://doi.org/10.1002/adma.201404054
  21. J. Yin, G. Zhu, and B. Deng, "Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification", Desalination, 379, 93 (2016). https://doi.org/10.1016/j.desal.2015.11.001
  22. H. M. Hegab, Y. Wimalasiri, M. Ginic-Markovic, and L. Zou, "Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan", Desalination, 365, 99 (2015). https://doi.org/10.1016/j.desal.2015.02.029
  23. F. Perreault, M. E. Tousley, and M. Elimelech, "Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets", Environ. Sci. Techno. Lett., 1, 71 (2013). https://doi.org/10.1021/ez4001356
  24. W. Li, Y. Yang, J. K. Weber, G. Zhang, and R. Zhou, "Tunable, strain-controlled nanoporous $MoS_2$ filter for water desalination", ACS Nano, 10, 1829 (2016). https://doi.org/10.1021/acsnano.5b05250
  25. Y. Li, W. Zhao, M. Weyland, S. Yuan, Y. Xia, H. Y. Liu, M. P. Jian, J. D. Yang, C. D. Easton, C. Selomulya, and X. W. Zhang, "Thermally reduced nanoporous graphene oxide membrane for desalination", Environ. Sci. Technol., 53, 8314 (2019). https://doi.org/10.1021/acs.est.9b01914
  26. T. S. Yang, H. Lin, K. P. Loh, and B. H. Jia, "Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation", Chem. Mat., 31, 1829 (2019). https://doi.org/10.1021/acs.chemmater.8b03820
  27. J. Z. Ye, B. W. Zhang, Y. Gu, M. Yu, D. W. Wang, J. Y. Wu, and J. Y. Li, "Tailored graphene oxide membranes for the separation of ions and molecules", Appl. Nano Mater., 2, 6611 (2019). https://doi.org/10.1021/acsanm.9b01356
  28. M. Son, H. G. Choi, L. Liu, E. Celik, H. Park, and H. Choi, "Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination", Chem. Eng. J., 266, 376 (2015). https://doi.org/10.1016/j.cej.2014.12.108
  29. M. C. Duke, B. Zhu, C. M. Doherty, M. R. Hill, A. J. Hill, and M. A. Carreon, "Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes", Desalination, 377, 128 (2016). https://doi.org/10.1016/j.desal.2015.09.004
  30. L. C. Lin, J. Choi, and J. C. Grossman, "Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination", Chem. Commun., 51, 14921 (2015). https://doi.org/10.1039/C5CC05969K