DOI QR코드

DOI QR Code

Measurement of Viscosity Behavior in In-situ Anionic Polymerization of ε-caprolactam for Thermoplastic Reactive Resin Transfer Molding

반응액상성형에서 ε-카프로락탐의 음이온 중합에 따른 점도 거동 평가

  • Lee, Jae Hyo (Polymer Composite Lab, Department of Polymer Science and Engineering, Pusan National University) ;
  • Kang, Seung In (Polymer Composite Lab, Department of Polymer Science and Engineering, Pusan National University) ;
  • Kim, Sang Woo (Composites Research Division, Korea Institute of Materials Science) ;
  • Yi, Jin Woo (Composites Research Division, Korea Institute of Materials Science) ;
  • Seong, Dong Gi (Polymer Composite Lab, Department of Polymer Science and Engineering, Pusan National University)
  • Received : 2019.08.28
  • Accepted : 2020.03.13
  • Published : 2020.04.30

Abstract

Recently, fabrication process of thermoplastic polyamide-based composites with recyclability as well as impact, chemical, and abrasion resistance have been widely studied. In particular, thermoplastic reactive resin transfer molding (TRTM) in which monomer with low viscosity is injected and in-situ polymerized inside mold has received a great attention, because thermoplastic melts are hard to impregnate fiber preform due to their very high viscosity. However, it is difficult to optimize the processing conditions because of high reactivity and sensitivity to external environments of the used monomer, ε-caprolactam. In this study, viscosity as an important process parameter in TRTM was measured during in-situ anionic polymerization of ε-caprolactam and the solutions for problems caused by high polymerization rate and sensitivity to moisture and oxygen were suggested. Reliability of the improved measurement technique was verified by comparing the viscosity behavior at various environmental conditions including humidity and atmosphere, and it is expected to be helpful for optimization of TRTM process.

최근 내화학성, 내마모성 및 내충격성이 뛰어나면서 재활용이 가능한 열가소성 폴리아미드 기반 복합재료를 제조하는 기술을 개발하기 위한 연구가 활발하다. 특히, 열가소성 고분자는 높은 점도로 용융 상태에서의 가공이 힘들기 때문에 저점도 단량체 상태로 금형 내부로 주입하면서 동시에 중합을 시키는 반응액상성형 공정이 큰 주목을 받고 있다. 그러나 단량체인 ε-카프로락탐은 중합속도가 매우 빠르고 외부 환경에 매우 민감하기 때문에 수지 함침과 중합 반응을 동시에 제어하면서 최적 공정조건을 확보하는 데 많은 어려움을 겪고 있는 실정이다. 따라서 본 연구에서는 ε-카프로락탐의 음이온 중합과정에서 주요한 공정 변수인 점도 변화 거동을 관찰하였고 ε-카프로락탐의 빠른 중합, 낮은 점도, 수분 민감성에 따른 측정상의 문제 원인을 분석하여 개선책을 제시하였다. 개선된 점도 측정 방법에 대한 재현성과 신뢰성은 여러 상대습도에 대한 점도 측정 그리고 외부 환경(수분, 산소)과 차단된 상황에서의 중합과 개선된 점도 측정 결과와의 비교를 바탕으로 검증하였으며, 이는 복합재료 반응액상성형 공정의 제어 인자로 활용함으로써 공정 최적화에 도움이 될 것으로 기대된다.

Keywords

References

  1. Kim, B.-J., Cha, S.-H., and Park, Y.-B., "Ultra-high-speed Processing of Nanomaterial-reinforced Woven Carbon Fiber/polyamide 6 Composites Using Reactive Thermoplastic Resin Transfer Molding," Composites Part B: Engineering, Vol. 143, 2018, pp. 36-46. https://doi.org/10.1016/j.compositesb.2018.02.002
  2. Van Rijswijk, K., Lindstedt, S., Vlasveld, D.P.N., Bersee, H.E.N., and Beukers, A., "Reactive Processing of Anionic Polyamide-6 for Application in Fiber Composites: A Comparative Study with Melt Processed Polyamides and Nanocomposites," Polymer Testing, Vol. 25, 2006, pp. 873-887. https://doi.org/10.1016/j.polymertesting.2006.05.006
  3. Dave, R.S., Kruse, R.L., Udipi, K., and Williams, D.E., "Polyamides from Lactams Via Anionic Ring-opening Polymerization: 3. Rheology," Polymer, Vol. 38, No. 4, 1997, pp. 949-954. https://doi.org/10.1016/S0032-3861(96)00568-X
  4. Thomassey, M., Paul, B.P., Ruch, F., Schell, J., and Bouquey, J., "Interest of a Rheokinetic Study for the Development of Thermoplastic Composites by T-RTM," Universal Journal of Materials Science, Vol. 5, No. 1, 2017, pp. 15-27. https://doi.org/10.13189/ujms.2017.050103
  5. Taki, K., Shoji, N., Kobayashi, M., and Ito, H., "A Kinetic Model of Viscosity Development for in situ Ring-opening Anionic Polymerization," Microsyst Technol, Vol. 23, No. 5, 2017, pp. 1161-1169. https://doi.org/10.1007/s00542-016-3045-6
  6. Ueda, K., Nakai, M., Hosoda, M., and Tai, K., "Synthesis of High Molecular Weight Nylon 6 by Anionic Polymerization of $\varepsilon$-Caprolactam. Mechanism and Kinetics," Polymer Journal, Vol. 29, No. 7, 1997, pp. 568-573. https://doi.org/10.1295/polymj.29.568
  7. Van Rijswijk, K., Teuwen, J.J.E., Bersee, H.E.N., and Beukers, A., "Textile Fiber-reinforced Anionic Polyamide-6 Composites. Part I: The Vacuum Infusion Process," Composites Part A: Applied Science and Manufacturing, Vol. 40, 2009, pp. 1-10. https://doi.org/10.1016/j.compositesa.2008.03.018
  8. Bernat, P., Hladka, O., Fismanova, M., Roda, J., and Brozek, J., "Polymerization of Lactams. 98$\star$: Influence of Water on the Non-activated Polymerization of $\varepsilon$-Caprolactam," European Polymer Journal, Vol. 44, 2008, pp. 32-41. https://doi.org/10.1016/j.eurpolymj.2007.10.026
  9. Maazouz, A., Lamnawar, K., and Dkier, M., "Chemorheological Study and In-situ Monitoring of PA6 Anionic-ring Polymerization for RTM Processing Control," Composites Part A: Applied Science and Manufacturing, Vol. 107, 2018, pp. 235-247. https://doi.org/10.1016/j.compositesa.2018.01.007
  10. Sibikin, I., and Karger-Kocsis, J., "Toward Industrial Use of Anionically Activated Lactam Polymers: Past, Present and Future," Advanced Industrial and Engineering Polymer Research, Vol. 1, 2018, pp. 48-60. https://doi.org/10.1016/j.aiepr.2018.06.003
  11. Durai Prabhakaran, R.T., "Are Reactive Thermoplastic Polymers Suitable for Future Wind Turbine Composite Materials Blades?," Mechanics of Advanced Materials and Structures, Vol. 21, 2014, pp. 213-221. https://doi.org/10.1080/15376494.2013.834090
  12. Vicard, C., Almeida, O.D., Cantarel, A., and Bernhart, G., "Experimental Study of Polymerization and Crystallization Kinetics of Polyamide 6 Obtained by Anionic Ring Opening Polymerization of $\varepsilon$-caprolactam," Polymer, Vol. 132, 2017, pp. 88-97. https://doi.org/10.1016/j.polymer.2017.10.039
  13. Jang, J., Lee, H.S., Kim, J.W., Kim, S.Y., Kim, S.H., Hwang, I., Kang, B.J., and Kang, M.K., "Facile and Cost-effective Strategy for Fabrication of Polyamide 6 Wrapped Multi-walled Carbon Nanotube via Anionic Melt Polymerization of $\varepsilon$-caprolactam," Chemical Engineering Journal, Vol. 373, 2019, pp. 251-258. https://doi.org/10.1016/j.cej.2019.05.044
  14. van Rijswijk, K., Bersee, H.E.N., Jager, W.F., and Picken, S.J., "Optimisation of Anionic Polyamide-6 for Vacuum Infusion of Thermoplastic Composites: Choice of Activator and Initiator," Composites Part A: Applied Science and Manufacturing, Vol. 37, 2006, pp. 949-956. https://doi.org/10.1016/j.compositesa.2005.01.023