DOI QR코드

DOI QR Code

Additive Manufacturing for Sensor Integrated Components

센서 융합형 지능형 부품 제조를 위한 적층 제조 기술 연구

  • 정임두 (한동대학교 기계제어공학부) ;
  • 이민식 (재료연구소 3D프린팅소재연구센터) ;
  • 우영진 (재료연구소 3D프린팅소재연구센터) ;
  • 김경태 (재료연구소 3D프린팅소재연구센터) ;
  • 유지훈 (재료연구소 3D프린팅소재연구센터)
  • Received : 2020.04.13
  • Accepted : 2020.04.23
  • Published : 2020.04.28

Abstract

The convergence of artificial intelligence with smart factories or smart mechanical systems has been actively studied to maximize the efficiency and safety. Despite the high improvement of artificial neural networks, their application in the manufacturing industry has been difficult due to limitations in obtaining meaningful data from factories or mechanical systems. Accordingly, there have been active studies on manufacturing components with sensor integration allowing them to generate important data from themselves. Additive manufacturing enables the fabrication of a net shaped product with various materials including plastic, metal, or ceramic parts. With the principle of layer-by-layer adhesion of material, there has been active research to utilize this multi-step manufacturing process, such as changing the material at a certain step of adhesion or adding sensor components in the middle of the additive manufacturing process. Particularly for smart parts manufacturing, researchers have attempted to embed sensors or integrated circuit boards within a three-dimensional component during the additive manufacturing process. While most of the sensor embedding additive manufacturing was based on polymer material, there have also been studies on sensor integration within metal or ceramic materials. This study reviews the additive manufacturing technology for sensor integration into plastic, ceramic, and metal materials.

Keywords

References

  1. J. Lee, H. Davari, J. Singh and V. Pandhare: Manufacturing Lett., 18 (2018) 20. https://doi.org/10.1016/j.mfglet.2018.09.002
  2. B. Li, B. Hou, W. Yu, X. Lu and C. Yang: Front. Inf. Technol. Electron. Eng., 18 (2017) 86. https://doi.org/10.1631/FITEE.1601885
  3. S. P. L. Kumar: Eng. Appl. Artif. Intell., 65 (2017) 294. https://doi.org/10.1016/j.engappai.2017.08.005
  4. F. Tao, Q. Qi, A. Liu and A. Kusiak: J. Manuf. Syst., 48 (2018) 157.
  5. J. M. Perkel: Nature, 542 (2017) 125. https://doi.org/10.1038/542125a
  6. A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi: IEEE Internet Things J., 1 (2014) 22. https://doi.org/10.1109/JIOT.2014.2306328
  7. S. Chu: AASRI Procedia, 1 (2012) 106. https://doi.org/10.1016/j.aasri.2012.06.019
  8. Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran and S. Guizani: IEEE Commun. Mag., 55 (2017) 16.
  9. C. Metallo, R. Agrifoglio, F. Schiavone and J. Mueller: Technol. Forecast. Soc. Change, 136 (2018) 298. https://doi.org/10.1016/j.techfore.2018.01.020
  10. Z. K. A. Mohammed and E. S. A. Ahmed: WSN, 67 (2017) 126.
  11. C. Li, X. Hu and L. Zhang: Procedia Comput. Sci., 112 (2017) 2328. https://doi.org/10.1016/j.procs.2017.08.265
  12. M. A. Akkaş and R. Sokullu: Procedia Comput. Sci., 113 (2017) 603. https://doi.org/10.1016/j.procs.2017.08.300
  13. A. Kusiak: J. Intell., 30 (2019) 1.
  14. K. S. Aggour, V. K. Gupta, D. Ruscitto and L. Ajdelsztajn: MRS Bulletin, 44 (2019) 545. https://doi.org/10.1557/mrs.2019.157
  15. S. Mao, B. Wang, Y. Tang and F. Qian: Engineering, 5 (2019) 995. https://doi.org/10.1016/j.eng.2019.08.013
  16. R. T. Kreutzer and M. Sirrenberg: Understanding Artificial Intelligence, Springer, 1 (2020) 87.
  17. H. Zhang, S. K. Moon and T. H. Ngo: ACS Appl. Mater. Interfaces, 11 (2019) 17994. https://doi.org/10.1021/acsami.9b02898
  18. L. P. Mortensen, D. H. Ryu, Y. J. Zhao and K. J. Loh: Key Eng. Mater., 569 (2013) 515. https://doi.org/10.4028/www.scientific.net/KEM.569-570.515
  19. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen and D. Hui: Composite Part B, 143 (2018) 172. https://doi.org/10.1016/j.compositesb.2018.02.012
  20. J. J. Lewandowski and M. Seifi: Annu. Rev. Mater. Res. 46 (2016) 151. https://doi.org/10.1146/annurev-matsci-070115-032024
  21. B. Vayre, F. Vignat and F. Villeneuve: Mech. Ind., 13 (2012) 89. https://doi.org/10.1051/meca/2012003
  22. A. Dijkshorrn, P. Werkman, M. Welleweerd, G. Wolterink, B. Eijking, J. Delamare, R. Sanders and G. J. M. Krijnen: J. Sens. Sens. Syst., 7 (2018) 169. https://doi.org/10.5194/jsss-7-169-2018
  23. S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson and D. A. Hutchins: PLOS One, 7 (2012) 11.
  24. B. Lu, H. Lan and H. Liu: Opto-Electron. Adv., 1 (2018) 170004.
  25. A. B. Varotsisa, X. Hana, R. A. Harrisb and D. S. Engstroma: Addit. Manuf., 29 (2019) 100799.
  26. J. Karthikeyan: NASA/CR, 1 (2007) 214706.
  27. Saheb and S. Mekid: Materials, 8 (2015) 7938. https://doi.org/10.3390/ma8115435
  28. D. Havermann, J. Mathew, W. N. MacPherson, R. R. J. Maier and D. P. Hand: J. Lightwave Technol., 33 (2015) 2474. https://doi.org/10.1109/JLT.2014.2366835
  29. A. Hehr, M. Norfolk, J. Sheridan, M. Davis, W. Leser, P. Leser and J. A. Newman: JOM, 71 (2019) 1528. https://doi.org/10.1007/s11837-018-3297-y
  30. C. M. Petrie, N. Sridharan, M. Subramanian, A. Hehr, M. Norfolk and J. Sheridan: Smart Mater. Struct., 28 (2019) 5.
  31. C. M. Petrie, N. Sridharan, A. Hehr, M. Norfolk and J. Sheridan: Smart Mater. Struct., 28 (2019) 8.
  32. P. Stoll, J. Mathew, A. Spierings, T. Bauer, R. R. J. Maier and K. Wegener: Embedding fibre optical sensors into SLM parts, Cham (Ed.), SSF Symp. Proc. Texas (2017) 273.
  33. I. D. Jung, M. S. Lee, J. S. Lee, H. K. Sung and J. H. Choe: Addit. Manuf., 33 (2020) 101151. https://doi.org/10.1016/j.addma.2020.101151
  34. J. Lei, Q. Zhang, Y. Song, J. Tang, J. Tong, F. Peng and H. Xiao: Opt. Laser Technol., 128 (2020) 106223. https://doi.org/10.1016/j.optlastec.2020.106223
  35. A. Ghazanfari, W. Lia, M. C. Leu, Y. Zhuang and J. Huang: Mater. Des., 112 (2016) 197. https://doi.org/10.1016/j.matdes.2016.09.074
  36. C. M. Petrie, D. N. Leonard, Y. Yang, M. P. Trammel, B. C. Jolly and K. A. Terrani: Ph. D. Dissertation, Embedment of Sensors In Ceramic Structures, Oak Ridge National Laboratory, USA (2019) 26.
  37. A. B. Varotsis, R. J. Friel, R. A. Harris and D. S. Engstrom: J. Manuf. Process., 32 (2018) 664. https://doi.org/10.1016/j.jmapro.2018.03.027
  38. J. T. Muth, D. M. Vogt, R. L. Truby, D. B. Kolesky, R. J. Wood and J. A. Lewis: Adv. Mater., 26 (2014) 6307. https://doi.org/10.1002/adma.201400334
  39. R. L. Truby, M. Wehner, A. K. Grosskopf, D. M. Vogt, S. G. M. Uzel, R. J. Wood and J. A. Lewis: Adv. Mater., 30 (2018) 1706383. https://doi.org/10.1002/adma.201706383
  40. L. J. Stiltner, A. M. Elliott and C. B. Williams: J. Intell. Mater. Syst. Struct., 26 (2011) 583.
  41. C. Shemelya, F. Cedillos, E. Aguilera, E. Maestas, J. Ramos, D. Espalin and D. Muse: IEEE Sens., (2013) 3.