DOI QR코드

DOI QR Code

분말 합금법으로 제조된 Fe-Cr-Al 금속 다공체의 구조, 미세조직 및 기계적 특성

Structural Characteristics, Microstructure and Mechanical Properties of Fe-Cr-Al Metallic Foam Fabricated by Powder Alloying Process

  • 김규식 (인하대학교 신소재공학과) ;
  • 강병훈 (국립 안동대학교 신소재공학부) ;
  • 박만호 ((주)아스플로 연구소) ;
  • 윤중열 (재료연구소) ;
  • 이기안 (인하대학교 신소재공학과)
  • 투고 : 2020.02.06
  • 심사 : 2020.02.18
  • 발행 : 2020.02.28

초록

The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 ㎛ (450 foam) and 1220 ㎛ (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10-3/s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.

키워드

참고문헌

  1. L. J. Gibson and M. F. Ashby: Cellular solids: Structure and Properties, 2nd Ed. Cambridge University Press, Cambridge, UK (1997).
  2. H. Yu, H. Chen, M. Pan, Y. Tang, K. Zeng, F. Peng and H. Wang: Appl. Catal., A, 327 (2007) 106. https://doi.org/10.1016/j.apcata.2007.05.003
  3. T. J. Lu: Int. J. Heat Mass Transfer., 42 (1999) 2031. https://doi.org/10.1016/S0017-9310(98)00306-8
  4. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  5. G. J. Davies and S. Zhen: J. Mater. Sci., 18 (1983) 1899. https://doi.org/10.1007/BF00554981
  6. R. A. Steven and P. E. J. Flewitt: Mater. Sci. Eng., 37 (1979) 237. https://doi.org/10.1016/0025-5416(79)90157-5
  7. G. Walther, B. Kloden, T. Buttner, T. Weissgarber, B. Kieback, A. Bohm, D. Naumann, S. Saberi and L. Timberg: Adv. Eng. Mater., 10 (2008) 803. https://doi.org/10.1002/adem.200800088
  8. J. Choi and K. Kim: J. Korean Powder Metall. Inst., 17 (2010) 489. https://doi.org/10.4150/KPMI.2010.17.6.489
  9. Y. He, J. Liu, S. Qiu, Z. Deng, Y. Yang and A. McLean: Mater. Sci. Eng. A, 726 (2018) 56. https://doi.org/10.1016/j.msea.2018.04.039
  10. J. Engkvist, U. Bexell, M. Grehk and M. Olsson: Mater. Corros., 60 (2009) 876. https://doi.org/10.1002/maco.200805186
  11. F. Clemendot, J. M. Gras, J. C. Van Duysen and G. Zachariey: Corros. Sci., 35 (1993) 901. https://doi.org/10.1016/0010-938X(93)90307-3
  12. D. H. Kim, B. Y. Yu, P. R. Cha, W. Y. Yoon, J. Y. Byun and S. H. Kim: Surf. Coat. Technol., 209 (2012) 169. https://doi.org/10.1016/j.surfcoat.2012.08.017
  13. J. S. Oh, S. H. Lim, S. H. Choi, M. H. Park and K. A. Lee: Advanced Materials Research, 690-693 (2013) 294. https://doi.org/10.4028/www.scientific.net/AMR.690-693.294
  14. S. H. Lim, J. S. Oh, Y. M. Kong, B. K. Kim, M. H. Park and K. A. Lee: Korean J. Met. Mater., 51 (2013) 743. https://doi.org/10.3365/KJMM.2013.51.10.743
  15. N. Michailidis, F. Stergioudi, H. Omar and D. N. Tsipas: Mech. Mater., 42 (2010) 142. https://doi.org/10.1016/j.mechmat.2009.10.006
  16. B. H. Smith, S. Szyniszewski, J. F. Hajjar, B. W. Schafer and S. R. Arwade: J. Constr. Steel Res., 71 (2012) 1. https://doi.org/10.1016/j.jcsr.2011.10.028