DOI QR코드

DOI QR Code

무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering

  • 이재성 (충북대학교 신소재공학과) ;
  • 강지연 (충북대학교 신소재공학과) ;
  • 김슬기 (충북대학교 신소재공학과) ;
  • 정찬회 ((주)미래이피) ;
  • 이동주 (충북대학교 신소재공학과)
  • Lee, Jaesung (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kang, Ji Yeon (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kim, Seulgi (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Jung, Chanhoe (MIRAEEP) ;
  • Lee, Dongju (Department of Advanced Materials Engineering, Chungbuk National University)
  • 투고 : 2020.01.13
  • 심사 : 2020.02.10
  • 발행 : 2020.02.28

초록

Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

키워드

참고문헌

  1. C. Zweben: JOM, 50 (1998) 47. https://doi.org/10.1007/s11837-998-0128-6
  2. P. M. Adams, H. A. Katzman, G. S. Rellick and G. W. Stupian: Carbon, 36 (1998) 233. https://doi.org/10.1016/S0008-6223(97)00189-9
  3. A. A. Balandin: Nat. Mater., 10 (2011) 569. https://doi.org/10.1038/nmat3064
  4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau: Nano Lett., 8 (2008) 902. https://doi.org/10.1021/nl0731872
  5. J. Che, T. Cagin and W. A. Goddard: Nanotechnology, 11 (2000) 65. https://doi.org/10.1088/0957-4484/11/2/305
  6. C. F. Deng, Y. X. Ma, P. Zhang, X. X. Zhang and D. Z. Wang: Mater. Lett., 62 (2008) 2301. https://doi.org/10.1016/j.matlet.2007.11.086
  7. E. Khaleghi, M. Torikachvili, M. A. Meyers and E. A. Olevsky: Mater. Lett., 79 (2012) 256. https://doi.org/10.1016/j.matlet.2012.03.117
  8. R. Prieto, J. M. Molina, J. Narciso and E. Louis: Compos. Part A, 42 (2011) 1970. https://doi.org/10.1016/j.compositesa.2011.08.022
  9. R. Prieto, J. M. Molina, J. Narciso and E. Louis: Scripta Mater., 59 (2008) 11. https://doi.org/10.1016/j.scriptamat.2008.02.026
  10. L. David, A. Feldman, E. Mansfield, J. Lehman and G. Singh: Sci. Rep., 4 (2014) 4311. https://doi.org/10.1038/srep04311
  11. P. Goli, H. Ning, X. Li, C. Y. Lu, K. S. Novoselov and A. A. Balandin: Nano Lett., 14 (2014) 1497. https://doi.org/10.1021/nl404719n
  12. A. Li, C. Zhang and Y.-F. Zhang: Polymers, 9 (2017) 437. https://doi.org/10.3390/polym9090437
  13. G. Bai, N. Li, X. Wang, J. Wang, M. J. Kim and H. Zhang: J. Alloys Compd., 735 (2018) 1648. https://doi.org/10.1016/j.jallcom.2017.11.273
  14. J. He, X. Wang, Y. Zhang, Y. Zhao and H. Zhang: Compos. Part B, 68 (2015) 22. https://doi.org/10.1016/j.compositesb.2014.08.023
  15. C. Mattevi, H. Kim and M. Chhowalla: J. Mater. Chem., 21 (2011) 3324. https://doi.org/10.1039/C0JM02126A
  16. Y. Pan, X. He, S. Ren, M. Wu and X. Qu: Vacuum, 153 (2018) 74. https://doi.org/10.1016/j.vacuum.2018.03.052
  17. L. Wang, J. Li, Z. Che, X. Wang, H. Zhang, J. Wang and M. J. Kim: J. Alloys Compd., 749 (2018) 1098. https://doi.org/10.1016/j.jallcom.2018.03.241
  18. C.-W. Nan, R. Birringer, D. R. Clarke and H. Gleiter: J. Appl. Phys., 81 (1997) 6692. https://doi.org/10.1063/1.365209
  19. K. T. Kim, S. I. Cha, T. Gemming, J. Eckert and S. H. Hong: Small, 4 (2008) 1936. https://doi.org/10.1002/smll.200701223
  20. M. Park, B.-H. Kim, S. Kim, D.-S. Han, G. Kim and K.-R. Lee: Carbon, 49 (2011) 811. https://doi.org/10.1016/j.carbon.2010.10.019