DOI QR코드

DOI QR Code

Antifungal Activity of Silver Salts of Keggin-Type Heteropolyacids Against Sporothrix spp.

  • Mathias, Luciana Da Silva (Laboratorio de Sanidade Animal, Hospital Veterinario, Centro de Ciencias e Tecnologias Agropecuarias, Universidade Estadual do Norte Fluminense Darcy Ribeiro) ;
  • Almeida, Joao Carlos De Aquino (Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro) ;
  • Passoni, Luis Cesar (Laboratorio de Ciencias Quimicas, Centro de Ciencias e Tecnologias, Universidade Estadual do Norte Fluminense Darcy Ribeiro) ;
  • Gossani, Cristiani Miranda David (Laboratorio de Sanidade Animal, Hospital Veterinario, Centro de Ciencias e Tecnologias Agropecuarias, Universidade Estadual do Norte Fluminense Darcy Ribeiro) ;
  • Taveira, Gabriel Bonan (Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro) ;
  • Gomes, Valdirene Moreira (Laboratorio de Fisiologia e Bioquimica de Microrganismos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro) ;
  • Vieira-Da-Motta, Olney (Laboratorio de Sanidade Animal, Hospital Veterinario, Centro de Ciencias e Tecnologias Agropecuarias, Universidade Estadual do Norte Fluminense Darcy Ribeiro)
  • Received : 2019.07.26
  • Accepted : 2019.12.24
  • Published : 2020.04.28

Abstract

Sporotrichosis is a chronic and subacute mycosis causing epidemiological outbreaks involving sick cats and humans in southeastern Brazil. The systemic disease prevails in cats and in humans, with the symptoms restricted to the skin of immunocompetent individuals. Under these conditions, the prolonged treatment of animals and cases of recurrence justify the discovery of new treatments for sporotrichosis. This work addresses the antifungal activity of silver salts of Keggin-type heteropolyacid salts (Ag-HPA salts) such as Ag3[PW12O40], Ag6[SiW10V2O40], Ag4[SiW12O40] and Ag3[PMo12O40] and interactions with the antifungal drugs itraconazole (ITC), terbinafine (TBF) and amphotericin B (AMB) on the yeast and mycelia forms of Sporothrix spp. Sporothrix spp. yeast cells were susceptible to Ag-HPA salts at minimum inhibitory concentration (MIC) values ranging from 8 to 128 ㎍/ml. Interactions between Ag3[PW12O40] and Ag3[PMo12O40] with itraconazole and amphotericin B resulted in higher antifungal activity with a reduction in growth and melanization. Treated cells showed changes in cell membrane integrity, vacuolization, cytoplasm disorder, and membrane detachment. Promising antifungal activity for treating sporotrichosis was observed for the Ag-HPA salts Ag3[PMo12O40] and Ag3[PW12O40], which have a low cost, high yield and activity at low concentrations. However, further evaluation of in vivo tests is still required.

Keywords

References

  1. Barros MB, Almeida PR, Schubach AA. 201. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 24: 633-654. https://doi.org/10.1128/CMR.00007-11
  2. Lopez-Romero E, Reyes-Montes MR, Perez-Torres A, Ruiz-Baca E, Villagomez-Castro JC, Mora-Montes HM, et al. 2011. Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol. 6: 85-102. https://doi.org/10.2217/fmb.10.157
  3. Borges TS, Rossi CN, Luzes Fedullo JD, Taborda JP, Larsson CE. 2013. Isolation of Sporothrix schenckii from the claws of domestic cats (indoor and outdoor) and in captivity in Sao Paulo (Brazil). Mycopathol. 176: 129-137. https://doi.org/10.1007/s11046-013-9658-8
  4. Freitas DFS, Francesconi VAC, Tavares SMB, Campos DP, Lyra MR, Souza RV, et al. 2014. Infection in HIV-Infected Patients in Rio de Janeiro, Brazil. PLoS Negl. Trop. Dis. 8: e3110. https://doi.org/10.1371/journal.pntd.0003110
  5. Kauffman CA, Bustamante B, Chapman SW, Pappas PG. 2007. Clinical practice guidelines for the management of sporotrichosis: 2007 update by the infectious diseases society of America. Clin. Infect. Dis. 45: 1255-1265. https://doi.org/10.1086/522765
  6. Xue S-L, Li L. 2009. Oral potassium iodide for the treatment of sporotrichosis. Mycopathol. 167: 355-356. https://doi.org/10.1007/s11046-008-9178-0
  7. Gremiao I, Schubach T, Pereira S, Rodrigues A, Honse C, Barros M. 2011. Treatment of refractory feline sporotrichosis with a combination of intralesional amphotericin B and oral itraconazole. Aust Vet. J. 89: 346-351. https://doi.org/10.1111/j.1751-0813.2011.00804.x
  8. Chaves AR, de Campos MP, Barros MBL, do Carmo CN, Gremiao IDF, Pereira SA, et al. 2012. Treatment abandonment in feline sporotrichosis - Study of 147 Cases. Zoonosis Public Health. 60(2): 149-153.
  9. Reis EG, Gremiao IDF, Kitada AAB, Rocha RF, Castro VS, Barros MB, et al. 2012. Potassium iodide capsule treatment of feline sporotrichosis. J. Feline Med. Surg. 14: 399-404. https://doi.org/10.1177/1098612X12441317
  10. Tan R, Pang X, Wang H, Cui S, Jiang Y, Wang C, et al. 2012. Synthesis, crystal structure and antitumor activities of the dimeric silicotungstate containing cobalt: Na5K7[{${\beta}$-SiCo2W10O36(OH)2(H2O)}2]${\cdot}$39.5H2O. Inorg. Chem. Commun. 25: 70-73. https://doi.org/10.1016/j.inoche.2012.09.007
  11. Maksimov GM. 1995. Advances in the synthesis of polyoxometalates and in the study of heteropolyacids. Russ Chem. Rev. 64(5): 445-456. https://doi.org/10.1070/RC1995v064n05ABEH000159
  12. Inoue M, Suzuki T, Fujita Y, Oda M, Matsumoto N, Yamase T. 2006. Enhancement of antibacterial activity of ${\beta}$-lactam antibiotics by [P2W18O62]6-], [SiMo12O40]4-] and [PTi2W10O40]7-] against methicillin-resistant and vancomycin-resistant Staphylococcus aureus. J. Inorg Biochem. 100: 1225-1233. https://doi.org/10.1016/j.jinorgbio.2006.02.004
  13. Tan R, Wang C, Cui S, Wang H, Junfeng Han J, Xie R. 2014. Synthesis, crystal structure and antitumor activities of a new cobaltcontaining tungstoantimonate $Na_{9}[{Na(H_{2}O)_{2}}_{3}{Co(H_{2}O)}_{3}\;({\alpha}-B-SbW_{9}O_{33})_{2}]{\cdot}28H_{2}O$. J. Macromol. Sci. (Part A). 51: 33-36. https://doi.org/10.1080/10601325.2014.850621
  14. Sathicq AG, Romanelli GP, Palermo V, Vazquez PG, Thomas HJ. 2008. Heterocyclic amine salts of Keggin heteropolyacids used as catalyst for the selective oxidation of sulfides to sulfoxides. Tetrahedron Lett. 49: 1441-1444. https://doi.org/10.1016/j.tetlet.2008.01.009
  15. Shigeta S, Mori S, Kodama E, Kodamaa J, Takahashi K, Yamase T. 2003. Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxotungstates. Antiviral Res. 58: 265-271. https://doi.org/10.1016/S0166-3542(03)00009-3
  16. Zhao G, Stevens JSE. 1998. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11: 27-32. https://doi.org/10.1023/A:1009253223055
  17. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  18. Kim JK, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235-242. https://doi.org/10.1007/s10534-008-9159-2
  19. Dibrov P, Dzioba J, Gosink KK. 2002. Chemiosmotic mechanism of antimicrobial activity of Ag(+) in Vibrio cholerae. Antimicrob. Agents Chemother. 46: 2668-2670. https://doi.org/10.1128/AAC.46.8.2668-2670.2002
  20. Almeida LCP, Goncalves AD, Benedetti JE, Miranda PCML, Passoni LC, Nogueira AF. 2010. Preparation of conducting polyanilines doped with Keggin-type polyoxometalates and their application as counter electrode in dye-sensitized solar cells. J. Mater. Sci. 45: 5054-5060. https://doi.org/10.1007/s10853-010-4456-x
  21. Nosanchuk JD, Casadevall A. 2006. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob. Agents Chemother. 50: 3519-3528. https://doi.org/10.1128/AAC.00545-06
  22. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. 2008. approved standard, M38-A2, 2nd ed . Vilanova: Clinical and Laboratory Standards Institute.
  23. Araujo R, Rodrigues AG, Pina-Vaz C. 2004. A fast, practical and reproducible procedure for the standardization of the cell density of an Aspergillus suspension. J. Med. Microbiol. 53: 783-786. https://doi.org/10.1099/jmm.0.05425-0
  24. Thevissen K, Terras FRG, Broekaert WF. 1999. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol. 65: 5451-5458. https://doi.org/10.1128/aem.65.12.5451-5458.1999
  25. Tsigdinos GA. 1978. Heteropoly Compounds of Molybdenum and Tungsten. Top. Curr. Chem. 76: 1-64. https://doi.org/10.1007/BFb0047026
  26. Gong J, Shao C, Pan Y, Gao F, Qu L. 2004. Preparation, characterization and swelling behavior of H3PW12O40/poly(vinyl alcohol) fiber aggregates produced by an electrospinning method. Mater. Chem. Phys. 86: 156-160. https://doi.org/10.1016/j.matchemphys.2004.02.007
  27. Heravi MM, Sadjadi S. 2009. Recent Developments in use of heteropolyacids, their salts and polyoxometalates in organic synthesis. J. Iran. Chem. Soc. 6. 1-54. https://doi.org/10.1007/BF03246501
  28. Curticapean M, Toma F, Sopterean AM. 2007. Detection of the sensitivity of some bacteria and fungi to the action of sodium phosphotungstate beta-$Na_{6}[P_{2}W_{18}O_{62}].18H_{2}O]$. Bacteriol. Virusol. Parazitol. Epidemiol. 52: 139-147.
  29. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ. 2007. Antimicrobial effects of silver nanoparticles. Nanomed: Nanotechnology. Biol. Med. 3: 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  30. Morris-Jones R, Youngchim S, Gomez B L, Aisen P, Hay RJ, Nosanchuk JD, et al. 2003. Synthesis of melanin-like pigments by Sporothrix schenckii in vitro and during mammalian infection. Infect. Immun. 71: 4026-4033. https://doi.org/10.1128/IAI.71.7.4026-4033.2003
  31. Nosanchuk JD, Casadevall A. 2003. The contribution of melanin to microbial pathogenesis. Cell Microbiol. 5: 203-223. https://doi.org/10.1046/j.1462-5814.2003.00268.x
  32. Van Diun D, Casadevall A, Nosanchuk JD. 2002. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob. Agents Chem. 46: 3004-3007..
  33. Rosas AL, Casadevall A. 1997. Melanization affects susceptibility of Cryptococcus neoformans to heat and cold. FEMS Microbiol. Lett. 153: 265-272. https://doi.org/10.1016/S0378-1097(97)00239-5
  34. Lemos LS, dos Santos ASO, Vieira-da-Motta O, Texeira GN, Carvalho ECQ. 2007. Pulmonary cryptococcosis in slaughtered sheep: anatomopathology and culture. Vet. Microbiol. 125: 350-354. https://doi.org/10.1016/j.vetmic.2006.11.028
  35. Ulvatne H, Karoliussem S, Stiber T, Rekdal O, Svendsen JS. 2001. Short antibacterial peptides and erythromycin act synergically against Escherichia coli. J. Antimicrobial. Chem. 48: 203-208. https://doi.org/10.1093/jac/48.2.203
  36. Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Gerrero H. 2000. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect. Immun. 68: 3696-3703. https://doi.org/10.1128/IAI.68.6.3696-3703.2000
  37. Fu Y, Zhu Y, Zhang K, Yeung MT, Durocher D, Xiao W. 2008. Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133: 601-611. https://doi.org/10.1016/j.cell.2008.02.050
  38. Kim JK, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22: 235-242. https://doi.org/10.1007/s10534-008-9159-2
  39. Damm C, Munstedt H, Rosch A. 2008. The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater. Chem. Phys. 108: 61-66. https://doi.org/10.1016/j.matchemphys.2007.09.002
  40. Taveira GB, Mathias LS, Vieira-da-Motta O, Machado OLT, Rodrigues R, Carvalho AO, et al. 2012. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers 102: 30-39.
  41. Garrison RG, Boyd KS, Mariat F. 1975. Ultrastructural studies of the mycelium-to-yeast transformation of Sporothrix schenckii. J. Bacteriol. 124: 959-968. https://doi.org/10.1128/jb.124.2.959-968.1975
  42. Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  43. Carlin K. 2014. Infections and pH. J. Appl. Med. Sci. 3: 1-3.
  44. Taghavia M, Ehrampoushb MH, Ghaneianb MT, Tabatabaeec M, Fakhrid Y. 2018. Application of a Keggin-type heteropoly acid on supporting nanoparticles in photocatalytic degradation of organic pollutants in aqueous solutions. J. Clean. Prod. 197: 1447-1453. https://doi.org/10.1016/j.jclepro.2018.06.280
  45. Guo Z, Zhang Q, You T, Ji Z, Zhang X, Qin Y, et al. 2019. Heteropoly acids enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis and ethanol fermentation of Miscanthus x giganteus under mild conditions. Bioresour. Technol. 293: 122036. https://doi.org/10.1016/j.biortech.2019.122036
  46. Taghavi M, Ghaneian MT, Ehrampoush MH, Tabatabaee, M, Afsharnia M, Alami A, et al. 2018. Feasibility of applying the LED-UVinduced $TiO_{2}$/ZnO-supported $H_{3}PMo_{12}O_{40}$ nanoparticles in photocatalytic degradation of aniline. Environ. Monit Assess. 190(4):188. https://doi.org/10.1007/s10661-018-6565-y
  47. Vazquez-Munoz, R, Avalos-Borja, M, Castro-Longoria, E. 2014. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One 9(10): e108876. https://doi.org/10.1371/journal.pone.0108876
  48. Almeida AJ, Reis NF, Lourenco CS, Costa NQ, Bernardino MLA, Vieira-da-Motta O. 2018. Esporotricose em felinos domesticos (Felis catus domesticus) em Campos dos Goytacazes, RJ. Pesq. Vet. Bras. 38(7):1438-1443. https://doi.org/10.1590/1678-5150-pvb-5559
  49. Almeida AJ, Nahn Junior EP, Vieira-da-Motta O, Lourenco CS, Bernardino MLA, Nahn GPBP. 2019. Diagnosis of human sporotrichosis in Campos dos Goytacazes, Rio de Janeiro, Brazil. J. Infect. Dev. Ctries 13:768-772. https://doi.org/10.3855/jidc.11672
  50. Fernando, HN, Kumarasinghe, KGUR, Gunasekara, TDCP, Wijekoon, HPSK, Ekanayaka, EMAK, Rajapaksha, SP, Fernando, SSN, Jayaweera, PM. 2019. Synthesis, characterization and antimicrobial activity of garcinol capped silver nanoparticles. J. Microbiol Biotechnol. 29: 1841-1851. https://doi.org/10.4014/jmb.1904.04032