DOI QR코드

DOI QR Code

Acinetobacter pullorum sp. nov., Isolated from Chicken Meat

  • Elnar, Arxel G. (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Min-Gon (Department of Animal Science and Technology, Chung-Ang University) ;
  • Lee, Ju-Eun (Department of Animal Science and Technology, Chung-Ang University) ;
  • Han, Rae-Hee (Department of Animal Science and Technology, Chung-Ang University) ;
  • Yoon, Sung-Hee (Department of Animal Science and Technology, Chung-Ang University) ;
  • Lee, Gi-Yong (Department of Animal Science and Technology, Chung-Ang University) ;
  • Yang, Soo-Jin (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Geun-Bae (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2020.02.17
  • Accepted : 2020.03.16
  • Published : 2020.04.28

Abstract

A bacterial strain, designated B301T and isolated from raw chicken meat obtained from a local market in Korea, was characterized and identified using a polyphasic taxonomic approach. Cells were gram-negative, non-motile, obligate-aerobic coccobacilli that were catalase-positive and oxidase-negative. The optimum growth conditions were 30℃, pH 7.0, and 0% NaCl in tryptic soy broth. Colonies were round, convex, smooth, and cream-colored on tryptic soy agar. Strain B301T has a genome size of 3,102,684 bp, with 2,840 protein-coding genes and 102 RNA genes. The 16S rRNA gene analysis revealed that strain B301T belongs to the genus Acinetobacter and shares highest sequence similarity (97.12%) with A. celticus ANC 4603T and A. sichuanensis WCHAc060041T. The average nucleotide identity and digital DNA-DNA hybridization values for closely related species were below the cutoff values for species delineation (95-96% and 70%, respectively). The DNA G+C content of strain B301T was 37.0%. The major respiratory quinone was Q-9, and the cellular fatty acids were primarily summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:0, and C18:1 ω9c. The major polar lipids were phosphatidylethanolamine, diphosphatidyl-glycerol, phosphatidylglycerol, and phosphatidyl-serine. The antimicrobial resistance profile of strain B301T revealed the absence of antibiotic-resistance genes. Susceptibility to a wide range of antimicrobials, including imipenem, minocycline, ampicillin, and tetracycline, was also observed. The results of the phenotypic, chemotaxonomic, and phylogenetic analyses indicate that strain B301T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter pullorum sp. nov. is proposed. The type strain is B301T (=KACC 21653T = JCM 33942T).

Keywords

References

  1. Howard A, O'Donoghue M, Feeney A, Sleator RD. 2012. Acinetobacter baumannii. Virulence 3: 243-250. https://doi.org/10.4161/viru.19700
  2. Peleg AY, Seifert H, Paterson DL. 2008. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21: 538-582. https://doi.org/10.1128/CMR.00058-07
  3. Wong D, Nielsen, TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2016. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin. Microbiol. Rev. 30: 409-447. https://doi.org/10.1128/CMR.00058-16
  4. Rebic V, Masic N, Teskeredzic S, Aljicevic M, Abduzaimovic A, Rebic D. 2018. The importance of Acinetobacter species in the hospital environment. Med. Arch. 72: 330-334. https://doi.org/10.5455/medarh.2018.72.330-334
  5. Bitrian M, Gonzalez RH, Paris G, Hellingwerf KJ, Nudel CB. 2013. Blue-light-dependent inhibition of twitching motility in Acinetobacter baylyi ADP1: additive involvement of three BLUF-domain-containing proteins. Microbiology 159: 1828-1841. https://doi.org/10.1099/mic.0.069153-0
  6. Juni E. 2005. Genus II. Acinetobacter Brisou and Prevot 1954, pp 425-437. In Brenner DJ, Krieg NR, Stanley JT (ed) Bergey's Manual of Systematic Bacteriology, vol 2B, 2nd Ed. Springer, New York.
  7. Yang C, Guo ZB, Du ZM, Yang HY, Bi YJ, Wang GQ, et al. 2012. Cellular fatty acids as chemical markers for differentiation of Acinetobacter baumannii and Acinetobacter calcoaceticus. Biomed. Environ. Sci. 25: 711-717. https://doi.org/10.3967/0895-3988.2012.06.014
  8. Luo Y, Javed MA, Deneer H, Chen X. 2018. Nutrient depletion-induced production of tri-acylated glycerophospholipids in Acinetobacter radioresistens. Sci. Rep. 8: 7470. https://doi.org/10.1038/s41598-018-25869-9
  9. Hiraishi A, Masamune K, Kitamura H. 1989. Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Appl. Environ. Microbiol. 55: 897-901. https://doi.org/10.1128/aem.55.4.897-901.1989
  10. Carvalheira A, Ferreira V, Sillva J, Teixeira P. 2016. Enrichment of Acinetobacter spp. from food samples. Food Microbiol. 55: 123-127. https://doi.org/10.1016/j.fm.2015.11.002
  11. Han RH, Lee JE, Yoon SH, Kim GB. 2020. Acinetobacter pullicarnis sp. nov. isolated from chicken meat. Arch. Microbiol. 202: 727-732. https://doi.org/10.1007/s00203-019-01785-y
  12. Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
  13. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  14. Felsenstein J. 1981. Evolutionary tree from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
  15. Jukes TH, Cantor CR. 1969. Evolution of protein molecules, pp. 21-132. In Munro HN (ed) Mammalian Protein Metabolism, New York, Academic Press, Cambridge.
  16. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  17. Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
  18. Meier-Kolthoff JP, Auch AF, Klenk H. Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. https://doi.org/10.1186/1471-2105-14-60
  19. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 11: 1-11. https://doi.org/10.1186/1471-2105-11-1
  20. Steinegger M, Soding J. 2018. Clustering huge protein sequence sets in linear time. Nat. Commun. 9: 2542. https://doi.org/10.1038/s41467-018-04964-5
  21. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
  22. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  23. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268-274. https://doi.org/10.1093/molbev/msu300
  24. Tittsler RP, Sandholzer LA. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31: 575-580. https://doi.org/10.1128/jb.31.6.575-580.1936
  25. Fautz E, Reichenbach H. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett. 8: 87-91. https://doi.org/10.1016/0378-1097(80)90075-0
  26. Smith PB, Hancock GA, Rhoden DL. 1969. Improved medium for detecting deoxyribonuclease-producing bacteria. Appl. Microbiol. 18: 991-993. https://doi.org/10.1128/am.18.6.991-993.1969
  27. Lal A, Cheeptham N. 2012. Starch agar protocol. Available from https://www.asmscience.org/content/education/protocol/protocol.3780/. Accessed Nov. 12, 2019.
  28. Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, et al. 1998. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Tech. 12: 183-186. https://doi.org/10.1023/A:1008809105270
  29. Minnikin DE, O'Donell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  30. Hiraishi A, Ueda Y, Ishihara J, Mori T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42: 113-122.
  31. Komagata K, Suzuki KI. 1987. Lipid and call-wall analysis in bacterial systematics. Method. Microbiol. 19: 161-207. https://doi.org/10.1016/S0580-9517(08)70410-0
  32. Kuykendall LD, Roy MA, O'Niell JJ, Devine TE. 1988. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonuicum. Int. J. Syst. Evol. Microbiol. 38: 358-361.
  33. Alcock et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: D517-D525.
  34. Hudzicki J. 2009. Kirby-Bauer disk diffusion susceptibility test protocol. Available at https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro/. Accessed Nov. 11, 2019.
  35. CLSI. 2019. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. Available from http://em100.edaptivedocs.net/dashboard.aspx. Accessed Dec. 12, 2019.
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2016. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466. https://doi.org/10.1099/ijsem.0.002516
  37. Liu Y, Rao Q, Tu J, Zhang J, Huang M, Hu B, et al. 2018. Acinetobacter piscicola sp. nov., isolated from diseased farmed Murray cod (Maccullochella peelii peelii). Int. J. Syst. Evol. Microbiol. 68: 905-910. https://doi.org/10.1099/ijsem.0.002608
  38. Ho MT, Weselowski B, Yuan ZC. 2017. Complete genome sequence of Acinetobacter calcoaceticus CA16, a bacterium capable of degrading diesel and lignin. Genome Announc. 5: 1-2.

Cited by

  1. Chryseobacterium vaccae sp. nov., isolated from raw cow's milk vol.70, pp.9, 2020, https://doi.org/10.1099/ijsem.0.004250
  2. Precise Species Identification for Acinetobacter: a Genome-Based Study with Description of Two Novel Acinetobacter Species vol.6, pp.3, 2020, https://doi.org/10.1128/msystems.00237-21
  3. Nakamurella leprariae sp. nov., isolated from a lichen sample vol.204, pp.1, 2020, https://doi.org/10.1007/s00203-021-02626-7