References
- Howard A, O'Donoghue M, Feeney A, Sleator RD. 2012. Acinetobacter baumannii. Virulence 3: 243-250. https://doi.org/10.4161/viru.19700
- Peleg AY, Seifert H, Paterson DL. 2008. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21: 538-582. https://doi.org/10.1128/CMR.00058-07
- Wong D, Nielsen, TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2016. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin. Microbiol. Rev. 30: 409-447. https://doi.org/10.1128/CMR.00058-16
- Rebic V, Masic N, Teskeredzic S, Aljicevic M, Abduzaimovic A, Rebic D. 2018. The importance of Acinetobacter species in the hospital environment. Med. Arch. 72: 330-334. https://doi.org/10.5455/medarh.2018.72.330-334
- Bitrian M, Gonzalez RH, Paris G, Hellingwerf KJ, Nudel CB. 2013. Blue-light-dependent inhibition of twitching motility in Acinetobacter baylyi ADP1: additive involvement of three BLUF-domain-containing proteins. Microbiology 159: 1828-1841. https://doi.org/10.1099/mic.0.069153-0
- Juni E. 2005. Genus II. Acinetobacter Brisou and Prevot 1954, pp 425-437. In Brenner DJ, Krieg NR, Stanley JT (ed) Bergey's Manual of Systematic Bacteriology, vol 2B, 2nd Ed. Springer, New York.
- Yang C, Guo ZB, Du ZM, Yang HY, Bi YJ, Wang GQ, et al. 2012. Cellular fatty acids as chemical markers for differentiation of Acinetobacter baumannii and Acinetobacter calcoaceticus. Biomed. Environ. Sci. 25: 711-717. https://doi.org/10.3967/0895-3988.2012.06.014
- Luo Y, Javed MA, Deneer H, Chen X. 2018. Nutrient depletion-induced production of tri-acylated glycerophospholipids in Acinetobacter radioresistens. Sci. Rep. 8: 7470. https://doi.org/10.1038/s41598-018-25869-9
- Hiraishi A, Masamune K, Kitamura H. 1989. Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Appl. Environ. Microbiol. 55: 897-901. https://doi.org/10.1128/aem.55.4.897-901.1989
- Carvalheira A, Ferreira V, Sillva J, Teixeira P. 2016. Enrichment of Acinetobacter spp. from food samples. Food Microbiol. 55: 123-127. https://doi.org/10.1016/j.fm.2015.11.002
- Han RH, Lee JE, Yoon SH, Kim GB. 2020. Acinetobacter pullicarnis sp. nov. isolated from chicken meat. Arch. Microbiol. 202: 727-732. https://doi.org/10.1007/s00203-019-01785-y
- Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555. https://doi.org/10.1016/j.mimet.2003.08.009
- Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Felsenstein J. 1981. Evolutionary tree from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
- Jukes TH, Cantor CR. 1969. Evolution of protein molecules, pp. 21-132. In Munro HN (ed) Mammalian Protein Metabolism, New York, Academic Press, Cambridge.
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
- Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
- Meier-Kolthoff JP, Auch AF, Klenk H. Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. https://doi.org/10.1186/1471-2105-14-60
- Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 11: 1-11. https://doi.org/10.1186/1471-2105-11-1
- Steinegger M, Soding J. 2018. Clustering huge protein sequence sets in linear time. Nat. Commun. 9: 2542. https://doi.org/10.1038/s41467-018-04964-5
- Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797. https://doi.org/10.1093/nar/gkh340
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
- Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268-274. https://doi.org/10.1093/molbev/msu300
- Tittsler RP, Sandholzer LA. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31: 575-580. https://doi.org/10.1128/jb.31.6.575-580.1936
- Fautz E, Reichenbach H. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett. 8: 87-91. https://doi.org/10.1016/0378-1097(80)90075-0
- Smith PB, Hancock GA, Rhoden DL. 1969. Improved medium for detecting deoxyribonuclease-producing bacteria. Appl. Microbiol. 18: 991-993. https://doi.org/10.1128/am.18.6.991-993.1969
- Lal A, Cheeptham N. 2012. Starch agar protocol. Available from https://www.asmscience.org/content/education/protocol/protocol.3780/. Accessed Nov. 12, 2019.
- Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, et al. 1998. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Tech. 12: 183-186. https://doi.org/10.1023/A:1008809105270
- Minnikin DE, O'Donell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
- Hiraishi A, Ueda Y, Ishihara J, Mori T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42: 113-122.
- Komagata K, Suzuki KI. 1987. Lipid and call-wall analysis in bacterial systematics. Method. Microbiol. 19: 161-207. https://doi.org/10.1016/S0580-9517(08)70410-0
- Kuykendall LD, Roy MA, O'Niell JJ, Devine TE. 1988. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonuicum. Int. J. Syst. Evol. Microbiol. 38: 358-361.
- Alcock et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: D517-D525.
- Hudzicki J. 2009. Kirby-Bauer disk diffusion susceptibility test protocol. Available at https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro/. Accessed Nov. 11, 2019.
- CLSI. 2019. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. Available from http://em100.edaptivedocs.net/dashboard.aspx. Accessed Dec. 12, 2019.
- Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2016. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466. https://doi.org/10.1099/ijsem.0.002516
- Liu Y, Rao Q, Tu J, Zhang J, Huang M, Hu B, et al. 2018. Acinetobacter piscicola sp. nov., isolated from diseased farmed Murray cod (Maccullochella peelii peelii). Int. J. Syst. Evol. Microbiol. 68: 905-910. https://doi.org/10.1099/ijsem.0.002608
- Ho MT, Weselowski B, Yuan ZC. 2017. Complete genome sequence of Acinetobacter calcoaceticus CA16, a bacterium capable of degrading diesel and lignin. Genome Announc. 5: 1-2.
Cited by
- Chryseobacterium vaccae sp. nov., isolated from raw cow's milk vol.70, pp.9, 2020, https://doi.org/10.1099/ijsem.0.004250
- Precise Species Identification for Acinetobacter: a Genome-Based Study with Description of Two Novel Acinetobacter Species vol.6, pp.3, 2020, https://doi.org/10.1128/msystems.00237-21
- Nakamurella leprariae sp. nov., isolated from a lichen sample vol.204, pp.1, 2020, https://doi.org/10.1007/s00203-021-02626-7