참고문헌
- Horton T, Kroh A, Ahyong S, Bailly N, Boyko CB, Brandao SN, et al. 2019 World Register of Marine Species (WoRMS). Available from http://www.marinespecies.org/aphia.php?p=stats.
- Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115: 6506-6511. https://doi.org/10.1073/pnas.1711842115
- Herndl G, Weinbauer M. 2003. Marine microbial food web structure and function, pp. 265-277. Marine science frontiers for Europe, Ed. Springer.
- Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10: 538-550. https://doi.org/10.1038/nrmicro2832
- Lidicker Jr WZ. 1979. A clarification of interactions in ecological systems. Bioscience 29: 475-477. https://doi.org/10.2307/1307540
- Seymour JR, Amin SA, Raina J-B, Stocker R. 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2: 17065. https://doi.org/10.1038/nmicrobiol.2017.65
- Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. 2011. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat. Chem. 3: 331-335. https://doi.org/10.1038/nchem.1002
- Paul C, Pohnert G. 2011. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6: e21032. https://doi.org/10.1371/journal.pone.0021032
- Amin SA, Kupper FC, Green DH, Harris WR, Carrano CJ. 2007. Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. J. Am. Chem. Soc. 129: 478-479. https://doi.org/10.1021/ja067369u
- Amin SA, Green DH, Hart MC, Kupper FC, Sunda WG, Carrano CJ. 2009. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc. Natl. Acad. Sci. USA 106: 17071-17076. https://doi.org/10.1073/pnas.0905512106
- Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. 2015. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl. Acad. Sci. USA 112: 453-457. https://doi.org/10.1073/pnas.1413137112
- Amin SA, Parker MS, Armbrust EV. 2012. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76: 667-684. https://doi.org/10.1128/MMBR.00007-12
- Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T. 2006. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int. J. Syst. Evol. Microbiol. 56: 1293-1304. https://doi.org/10.1099/ijs.0.63724-0
- Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12: 686-698. https://doi.org/10.1038/nrmicro3326
- Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. 2005. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438: 90-93. https://doi.org/10.1038/nature04056
- Park S, Park JM, Yoon JH. 2018. Pseudoruegeria insulae sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 68: 3587-3592. https://doi.org/10.1099/ijsem.0.003035
- Park S, Park JM, Lee JS, Oh TK, Yoon JH. 2018. Pseudoruegeria litorisediminis sp. nov., a novel lipolytic bacterium of the family Rhodobacteraceae isolated from a tidal flat. Arch. Microbiol 200: 1183-1189. https://doi.org/10.1007/s00203-018-1539-6
- Lee JB, Kim H, Park DS, Yang JH, Chun YY, Lee KH, et al. 2014. Pseudoruegeria limi sp. nov. isolated from mud flats in the Yellow Sea in Korea. Antonie Van Leeuwenhoek 105: 987-994. https://doi.org/10.1007/s10482-014-0158-8
- Cha IT, Park I, Lee HW, Lee H, Park JM, Roh SW, et al. 2016. Pseudoruegeria aestuarii sp. nov., of the family Rhodobacteraceae, isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 66: 3125-3131. https://doi.org/10.1099/ijsem.0.001156
- Park S, Jung YT, Won SM, Yoon JH. 2014. Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int. J. Syst. Evol. Microbiol. 64: 3276-3281. https://doi.org/10.1099/ijs.0.066258-0
- Hyun DW, Shin NR, Kim MS, Kim PS, Kim JY, Whon TW, et al. 2013. Pseudoruegeria haliotis sp. nov., isolated from the gut of the abalone Haliotis discus hannai. Int. J. Syst. Evol. Microbiol. 63: 4626-4632. https://doi.org/10.1099/ijs.0.053892-0
- Jung YT, Kim BH, Oh TK, Yoon JH. 2010. Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria. Int. J. Syst. Evol. Microbiol. 60: 1177-1181. https://doi.org/10.1099/ijs.0.015073-0
- Yoon JH, Lee SY, Kang SJ, Lee CH, Oh TK. 2007. Pseudoruegeria aquimaris gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 57: 542-547. https://doi.org/10.1099/ijs.0.64594-0
- Park S, Jung Y-T, Won S-M, Yoon J-H. 2014. Pseudoruegeria sabulilitoris sp. nov., isolated from seashore sand. Int. J. Syst. Evol. Microbiol. 64: 3276-3281. https://doi.org/10.1099/ijs.0.066258-0
- Zhang Y, Xu Y, Fang W, Wang X, Fang Z, Xiao Y. 2017. Pseudoruegeria marinistellae sp. nov., isolated from an unidentified starfish in Sanya, China. Antonie Van Leeuwenhoek 110: 187-194. https://doi.org/10.1007/s10482-016-0789-z
- Pohlner M, Marshall I, Schreiber L, Cypionka H, Engelen B. 2017. Draft genome sequence of Pseudoruegeria sp. SK021, a representative of the marine Roseobacter group, isolated from north sea sediment. Genome Announc. 5(24): e00541-17.
- Breed MF, Harrison PA, Blyth C, Byrne M, Gaget V, Gellie NJ, et al. 2019. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 20: 615-628. https://doi.org/10.1038/s41576-019-0152-0
- Croft MT, Warren MJ, Smith AG. 2006. Algae need their vitamins. Eukaryot. Cell 5: 1175-1183. https://doi.org/10.1128/EC.00097-06
- Roosaare M, Puustusmaa M, Mols M, Vaher M, Remm M. 2018. PlasmidSeeker: identification of known plasmids from bacterial whole genome sequencing reads. Peer J. 6: e4588. https://doi.org/10.7717/peerj.4588
- Na S-I, Kim YO, Yoon S-H, Ha S-m, Baek I, Chun J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56: 280-285. https://doi.org/10.1007/s12275-018-8014-6
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
- Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2015. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44: D457-D462. https://doi.org/10.1093/nar/gkv1070
- Tatusov RL, Galperin MY, Natale DA, Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33-36. https://doi.org/10.1093/nar/28.1.33
- Consortium TGO. 2014. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43: D1049-D1056. https://doi.org/10.1093/nar/gku1179
- Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47: W81-W87. https://doi.org/10.1093/nar/gkz310
- Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Res. 43: W39-W49. https://doi.org/10.1093/nar/gkv416
- Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr. 3(3): 10.1128/microbiolspec.MB-0011-2014.
- Nunez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. 2014. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 21: 528. https://doi.org/10.1038/nsmb.2820
- Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, et al. 2017. Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res. 45: 3615-3626. https://doi.org/10.1093/nar/gkx070
- Sharma CM, Vogel J. 2014. Differential RNA-seq: the approach behind and the biological insight gained. Curr. Opin. Microbiol. 19: 97-105. https://doi.org/10.1016/j.mib.2014.06.010
- Grossart H-P, Simon M. 2007. Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 47: 163-176. https://doi.org/10.3354/ame047163
- Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S. 2016. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14-29. https://doi.org/10.1016/j.biotechadv.2015.12.003
- Cole JJ. 1982. Interactions between bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13: 291-314. https://doi.org/10.1146/annurev.es.13.110182.001451
- Tang YZ, Koch F, Gobler CJ. 2010. Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc. Natl. Acad. Sci. USA 107: 20756-20761. https://doi.org/10.1073/pnas.1009566107
- Jurgenson CT, Begley TP, Ealick SE. 2009. The structural and biochemical foundations of thiamin biosynthesis. Annu. Rev. Biochem. 78: 569-603. https://doi.org/10.1146/annurev.biochem.78.072407.102340
- Zempleni J, Wijeratne SS, Hassan YI. 2009. Biotin. Biofactors 35: 36-46. https://doi.org/10.1002/biof.8
- Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. 2002. The biosynthesis of adenosylcobalamin (vitamin B12). Nat. Prod. Rep. 19: 390-412. https://doi.org/10.1039/b108967f
- Bernard T, Jebbar M, Rassouli Y, Himdi-Kabbab S, Hamelin J, Blanco C. 1993. Ectoine accumulation and osmotic regulation in Brevibacterium linens. Microbiology 139: 129-136.
- Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. 2018. Bacterial quorum sensing and microbial community interactions. mBio. 9: e02331-02317.
- Klein I, von Rad U, Durner J. 2009. Homoserine lactones: do plants really listen to bacterial talk? Plant Signal Behav. 4: 50-51. https://doi.org/10.4161/psb.4.1.7300
-
Robinson SL, Christenson JK, Wackett LP. 2019. Biosynthesis and chemical diversity of
${\beta}$ -lactone natural products. Nat. Prod. Rep. 36: 458-475. https://doi.org/10.1039/c8np00052b - Oldfield E, Lin FY. 2012. Terpene biosynthesis: modularity rules. Angew. Chem. Intl. Ed. Engl. 51: 1124-1137. https://doi.org/10.1002/anie.201103110
- Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, et al. 2015. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 112: 857-862. https://doi.org/10.1073/pnas.1422108112
- Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY. 2007. Plant terpenoids: biosynthesis and ecological functions. J. Int. Plant Biol. 49: 179-186. https://doi.org/10.1111/j.1744-7909.2007.00395.x
- Cheung-Lee WL, Parry ME, Cartagena AJ, Darst SA, Link AJ. 2019. Discovery and structure of the antimicrobial lasso peptide citrocin. J. Biol. Chem. 294: 6822-6830. https://doi.org/10.1074/jbc.ra118.006494
- Kaweewan I, Hemmi H, Komaki H, Harada S, Kodani S. 2018. Isolation and structure determination of a new lasso peptide specialicin based on genome mining. Bioorg. Med. Chem. 26: 6050-6055. https://doi.org/10.1016/j.bmc.2018.11.007
- Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39-85. https://doi.org/10.1016/0168-6445(93)90057-G
- Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, et al. 2013. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30: 108-160. https://doi.org/10.1039/C2NP20085F
- Bozhuyuk KA, Linck A, Tietze A, Kranz J, Wesche F, Nowak S, et al. 2019. Modification and de novo design of non-ribosomal peptide synthetases using specific assembly points within condensation domains. Nat. Chem. 11: 653-661 https://doi.org/10.1038/s41557-019-0276-z
- Bloudoff K, Schmeing TM. 2017. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim. Biophys. Acta Proteins Proteom. 1865: 1587-1604. https://doi.org/10.1016/j.bbapap.2017.05.010
- Lee C-K, Park T-G, Park Y-T, Lim W-A. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30: S3-S14. https://doi.org/10.1016/j.hal.2013.10.002
- Kim JH, Lee M, Lim YK, Kim YJ, Baek SH. 2019. Occurrence characteristics of harmful and non-harmful algal species related to coastal environments in the southern sea of Korea. Mar. Freshw. Res. 70: 794-806. https://doi.org/10.1071/MF18244
피인용 문헌
- Compositional and Functional Microbiome Variation Between Tubes of an Intertidal Polychaete and Surrounding Marine Sediment vol.8, 2020, https://doi.org/10.3389/fmars.2021.656506
- Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M vol.31, pp.4, 2021, https://doi.org/10.4014/jmb.2012.12054