DOI QR코드

DOI QR Code

Brucella melitensis omp31 Mutant Is Attenuated and Confers Protection Against Virulent Brucella melitensis Challenge in BALB/c Mice

  • Verdiguel-Fernandez, L (Laboratorio de Microbiologia Molecular, Departamento de Microbiologia e Inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico) ;
  • Oropeza-Navarro, R (Departamento de Microbiologia Molecular, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico) ;
  • Ortiz, Adolfo (Unidad de Bioseguridad de Brucella, Departamento de Microbiologia e Inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico) ;
  • Robles-Pesina, MG (Centro Nacional de Servicios de Diagnostico en Salud Animal (CENASA), Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria) ;
  • Ramirez-Lezama, J (Departamento de Patologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico) ;
  • Castaneda-Ramirez, A (Departamento de Zootecnia, Universidad Autonoma de Chapingo) ;
  • Verdugo-Rodriguez, A (Laboratorio de Microbiologia Molecular, Departamento de Microbiologia e Inmunologia, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico)
  • 투고 : 2019.08.29
  • 심사 : 2020.01.12
  • 발행 : 2020.04.28

초록

For control of brucellosis in small ruminants, attenuated B. melitensis Rev1 is used but it can be virulent for animals and human. Based on these aspects, it is essential to identify potential immunogens to avoid these problems in prevention of brucellosis. The majority of OMPs in the Omp25/31 family have been studied because these proteins are relevant in maintaining the integrity of the outer membrane but their implication in the virulence of the different species of this genus is not clearly described. Therefore, in this work we studied the role of Omp31 on virulence by determining the residual virulence and detecting lesions in spleen and testis of mice inoculated with the B. melitensis LVM31 mutant strain. In addition, we evaluated the conferred protection in mice immunized with the mutant strain against the challenge with the B. melitensis Bm133 virulent strain. Our results showed that the mutation of omp31 caused a decrease in splenic colonization without generating apparent lesions or histopathological changes apparent in both organs in comparison with the control strains and that the mutant strain conferred similar protection as the B. melitensis Rev1 vaccine strain against the challenge with B. melitensis Bm133 virulent strain. These results allow us to conclude that Omp31 plays an important role on the virulence of B. melitensis in the murine model, and due to the attenuation shown by the strain, it could be considered a vaccine candidate for the prevention of goat brucellosis.

키워드

참고문헌

  1. Pappas G. 2010. The changing Brucella ecology: novel reservoirs, new threats. Int. J. Antimicrob. Agents 36: S8-S11. https://doi.org/10.1016/j.ijantimicag.2010.06.013
  2. Godfroid J, Garin-Bastuji B, Saegerman C, Blasco JM. 2013. Brucellosis in terrestrial wildlife. Rev. Sci. Tech. 32: 27-42. https://doi.org/10.20506/rst.32.1.2180
  3. Lalsiamthara J, Lee JH. 2017. Development and trial of vaccines against Brucella. J. Vet. Sci. 18(S1): 281-290. https://doi.org/10.4142/jvs.2017.18.S1.281
  4. Blasco J. 1997. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev. Vet. Med. 31: 275-283. https://doi.org/10.1016/S0167-5877(96)01110-5
  5. Blasco JM, Diaz R. Brucella melitensis Rev-1 vaccine as a cause of human brucellosis. Lancet 342(8874): 805. https://doi.org/10.1016/0140-6736(93)91571-3
  6. Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG. 2004. Computational inference of scenarios for ${\alpha}$-proteobacterial genome evolution. Proc. Natl. Acad. Sci. USA101: 9722-9727. https://doi.org/10.1073/pnas.0400975101
  7. de Figueiredo P, Ficht TA, Rice-Ficht A, Rossetti CA, Adams LG. 2015. Pathogenesis and immunobiology of brucellosis: review of Brucella-Host Interactions. Am. J. Pathol. 185: 1505-1517. https://doi.org/10.1016/j.ajpath.2015.03.003
  8. Caro-Hernandez P, Fernandez-Lago L, de Miguel MJ, Martin-Martin AI, Cloeckaert A, Grillo MJ, et al. 2007. Role of the Omp25/Omp31 family in outer membrane properties and virulence of Brucella ovis. Infect. Immun. 75: 4050-4061. https://doi.org/10.1128/IAI.00486-07
  9. Vizcaino, N. and A. Cloeckaert. 2012. Biology and genetics of the Brucella outer membrane. Brucella molecular microbiology and genomics. 133-161.
  10. Lopez-Goni I, O'Callaghan D. 2012. Brucella: molecular microbiology and genomics. Horizon Scientific Press.
  11. Byndloss MX, Tsolis RM. 2016. Brucella spp. virulence factors and immunity. Annu. Rev. Anim. Biosci. 4: 111-127. https://doi.org/10.1146/annurev-animal-021815-111326
  12. Martin-Martin AI, Sancho P, Tejedor C, Fernandez-Lago L, Vizcaino N. 2011. Differences in the outer membrane-related properties of the six classical Brucella species. Vet. J. 189: 103-105. https://doi.org/10.1016/j.tvjl.2010.05.021
  13. Carroll JA, Coleman SA, Smitherman LS, Minnick MF. 2000. Hemin-binding surface protein from Bartonella quintana. Infect. Immun. 68: 6750-6757. https://doi.org/10.1128/IAI.68.12.6750-6757.2000
  14. Delpino MV, Cassataro J, Fossati CA, Goldbaum FA, Baldi PC. 2006. Brucella outer membrane protein Omp31 is a haemin-binding protein. Microbes Infect. 8: 1203-1208. https://doi.org/10.1016/j.micinf.2005.11.008
  15. Vizcaino N, Caro-Hernandez P, Cloeckaert A, Fernandez-Lago L. 2004. DNA polymorphism in the omp25/omp31 family of Brucella spp.: identification of a 1.7-kb inversion in Brucella cetaceae and of a 15.1-kb genomic island, absent from Brucella ovis, related to the synthesis of smooth lipopolysaccharide. Microbes Infect. 6: 821-834. https://doi.org/10.1016/j.micinf.2004.04.009
  16. Vizcaino N, Verger JM, Grayon M, Zygmunt MS, Cloeckaert A. 1997. DNA polymorphism at the omp-31 locus of Brucella spp.: evidence for a large deletion in Brucella abortus, and other species-specific markers. Microbiology 143: 2913-2921. https://doi.org/10.1099/00221287-143-9-2913
  17. Cloeckaert A, Jacques I, Grillo MJ, Marin CM, Grayon M, Blasco JM, et al. 2004. Development and evaluation as vaccines in mice of Brucella melitensis Rev. 1 single and double deletion mutants of the bp26 and omp31 genes coding for antigens of diagnostic significance in ovine brucellosis. Vaccine 22: 2827-2835. https://doi.org/10.1016/j.vaccine.2004.01.001
  18. Eschenbrenner M, Wagner MA, Horn TA, Kraycer JA, Mujer CV, Hagius S, et al. 2002. Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16M. J. Bacteriol. 184: 4962-4970. https://doi.org/10.1128/JB.184.18.4962-4970.2002
  19. Verdiguel-Fernandez L, Oropeza-Navarro R, Basurto-Alcantara FJ, Castaneda-Ramirez A, Verdugo-Rodriguez A. 2017. Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch. Microbiol. 199: 971-978. https://doi.org/10.1007/s00203-017-1360-7
  20. Slack MP, Wheldon DB. 1978. Wheldon, A simple and safe volumetric alternative to the method of Miles, Misra and Irwin for counting viable bacteria. J. Med. Microbiol. 11: 541-545. https://doi.org/10.1099/00222615-11-4-541
  21. NOM-041-ZOO-1995, N.O.M., Campana contra la Brucelosis de los Animales. Diario Oficial de la Federacion, Mexico, DF.
  22. Jacques I, Verger JM, Laroucau K, Grayon M, Vizcaino N, Peix A, et al. 2007. Immunological responses and protective efficacy against Brucella melitensis induced by bp26 and omp31 B. melitensis Rev. 1 deletion mutants in sheep. Vaccine 5: 794-805.
  23. Grillo MJ, Blasco JM, Gorvel JP, Moriyon I, Moreno E. 2012. What have we learned from brucellosis in the mouse model? Vet. Res. 43: 29. https://doi.org/10.1186/1297-9716-43-29
  24. Parkinson CM, O'Brien A, Albers TM, Simon MA, Clifford CB, Pritchett-Corning KR. 2011. Diagnostic necropsy and selected tissue and sample collection in rats and mice. J. Vis. Exp. 7: (54). pii:2966.
  25. von Bargen, K., J.-P. Gorvel, S.P. Salcedo. 2012. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 36: 533-562. https://doi.org/10.1111/j.1574-6976.2012.00334.x
  26. De Bolle X, Crosson S, Matroule JY, Letesson JJ . 2015. Brucella abortus cell cycle and infection are coordinated. Trends Microbiol. 23: 812-821. https://doi.org/10.1016/j.tim.2015.09.007
  27. Seleem MN, Boyle SM, Sriranganathan N. 2008. Brucella: a pathogen without classic virulence genes. Vet. Microbiol. 129: 1-14. https://doi.org/10.1016/j.vetmic.2007.11.023
  28. Roop RM 2nd, Bellaire BH, Valderas MW, Cardelli JA. 2004. Adaptation of the Brucellae to their intracellular niche. Mol. Microbiol. 52: 621-630. https://doi.org/10.1111/j.1365-2958.2004.04017.x
  29. Castaneda-Ramirez A, Gonzalez-Rodriguez D, Hernandez-Pineda JA, Verdugo-Rodriguez A. 2015. Blocking the expression of syntaxin 4 interferes with initial phagocytosis of Brucella melitensis in macrophages. Can. J. Vet. Res. 79: 39-45.
  30. Celli J. 2006. Surviving inside a macrophage: The many ways of Brucella. Res. Microbiol. 157: 93-98. https://doi.org/10.1016/j.resmic.2005.10.002
  31. Comerci DJ, Martinez-Lorenzo MJ, Sieira R, Gorvel JP, Ugalde RA. 2001. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole. Cell. Microbiol. 3: 159-168. https://doi.org/10.1046/j.1462-5822.2001.00102.x
  32. Teane Silva, Erica Costa, Tatiane Paixao, Renee Tsolis, Renato Santos. 2011. Laboratory animal models for brucellosis research. J. Biomed. Res Int. Article ID 51823.
  33. Rajashekara G, Glover DA, Krepps M, Splitter GA. 2005. Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell. Microbiol. 7: 1459-1473. https://doi.org/10.1111/j.1462-5822.2005.00570.x
  34. Rajashekara G, Glover DA, Banai M, O'Callaghan D, Splitter GA. 2006. Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice. Infect. Immun. 74: 2925-2936. https://doi.org/10.1128/IAI.74.5.2925-2936.2006
  35. Wang Z, Wang SS, Wang GL, Wu TL, Lv YL, Wu QM. 2014. A pregnant mouse model for the vertical transmission of Brucella melitensis. Vet. J. 200: 116-121. https://doi.org/10.1016/j.tvjl.2013.12.021
  36. Sancho P, Tejedor C, Sidhu-Munoz RS, Fernandez-Lago L, Vizcaino N. 2014. Evaluation in mice of Brucella ovis attenuated mutants for use as live vaccines against B. ovis infection. Vet. Res. 45: 61. https://doi.org/10.1186/1297-9716-45-61
  37. Martin-Martin AI, Caro-Hernandez P, Orduna A, Vizcaino N, Fernandez-Lago L. 2008. Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. Microbes Infect. 10: 706-710. https://doi.org/10.1016/j.micinf.2008.02.013
  38. Zhang K, Wang H, Guo F, Yuan L, Zhang W, Wang Y. 2016. OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by $TNF-{\alpha}$. Exp. Ther. Med. 12: 2783-2789. https://doi.org/10.3892/etm.2016.3655
  39. Vizcaino N, Cloeckaert A, Zygmunt MS, Dubray G. 1996. Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. Infect. Immun. 64: 3744-3751. https://doi.org/10.1128/iai.64.9.3744-3751.1996

피인용 문헌

  1. RNA-Seq Analysis Reveals the Role of Omp16 in Brucella-Infected RAW264.7 Cells vol.8, 2021, https://doi.org/10.3389/fvets.2021.646839
  2. Uncovering the Hidden Credentials of Brucella Virulence vol.85, pp.1, 2021, https://doi.org/10.1128/mmbr.00021-19
  3. Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein vol.15, pp.8, 2021, https://doi.org/10.1371/journal.pntd.0009695
  4. An ArsR Transcriptional Regulator Facilitates Brucella sp. Survival via Regulating Self and Outer Membrane Protein vol.22, pp.19, 2020, https://doi.org/10.3390/ijms221910860