DOI QR코드

DOI QR Code

Croton hirtus L'Hér Extract Prevents Inflammation in RAW264.7 Macrophages Via Inhibition of NF-κB Signaling Pathway

  • Kim, Min Jeong (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Kim, Ju Gyeong (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Sydara, Kong Many (Ministry of Health, Institute of Traditional Medicine) ;
  • Lee, Sang Woo (International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jung, Sung Keun (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2019.08.23
  • Accepted : 2019.11.11
  • Published : 2020.04.28

Abstract

Consumption of anti-inflammatory nutraceuticals may help treat or prevent inflammation-related illnesses such as diabetes, cardiovascular disease, and cancer. This study evaluated the effect of Croton hirtus L'Hér extract (CHE) on lipopolysaccharide (LPS)-induced nitric oxide (NO) production and nuclear factor kappa-B (NF-κB) signaling cascades. CHE significantly suppressed LPS-induced NO production and inducible nitric oxide synthase (iNOS) expression in RAW264.7 macrophages, although cyclooxygenase (COX)-2 expression was not affected. CHE also suppressed LPS-induced IκB kinase (IKK), IκB, and p65 phosphorylation in RAW264.7 cells. Western blot and immunofluorescence assays of cytosol and nuclear p65 and the catalytic subunit of NF-κB showed that CHE suppressed LPS-induced p65 translocation from the cytosol to the nucleus. CHE also suppressed LPS-induced Interleukin (IL)-6 and tumor necrosis factor (TNF)-α production in RAW264.7 cells. These results suggest that CHE prevents NO-mediated inflammation by suppressing NF-κB and inflammatory cytokines.

Keywords

References

  1. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. 2013. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 25: 1939-1948. https://doi.org/10.1016/j.cellsig.2013.06.007
  2. Okabe Y, Medzhitov R. 2016. Tissue biology perspective on macrophages. Nat. Immunol. 17: 9-17. https://doi.org/10.1038/ni.3320
  3. Rosadini CV, Kagan JC. 2017. Early innate immune responses to bacterial LPS. Curr. Opin. Immunol. 44: 14-19. https://doi.org/10.1016/j.coi.2016.10.005
  4. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514: 187-192. https://doi.org/10.1038/nature13683
  5. Lu G, Zhang R, Geng S, Peng L, Jayaraman P, Chen C, et al. 2015. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat. Commun. 6: 6676. https://doi.org/10.1038/ncomms7676
  6. Sharma JN, Al-Omran A, Parvathy SS. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15: 252-259. https://doi.org/10.1007/s10787-007-0013-x
  7. Park MH, Hong JT. 2016. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells 5: 15. https://doi.org/10.3390/cells5020015
  8. Sun SC. 2017. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 17: 545-558. https://doi.org/10.1038/nri.2017.52
  9. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cell Signal. 13: 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  10. Berry PE, Hipp AL, Wurdack KJ, Van Ee B, Riina R. 2005. Molecular phylogenetics of the giant genus croton and tribe crotoneae (Euphorbiaceae sensu stricto) using ITS and TRNL-TRNF DNA sequence data. Am. J. Bot. 92: 1520-1534. https://doi.org/10.3732/ajb.92.9.1520
  11. Salatino A, Salatino MLF, Negri G. 2007. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae). J. Braz. Chem. Soc. 18: 11-33. https://doi.org/10.1590/S0103-50532007000100002
  12. Soromou LW, Zhang Z, Li R, Chen N, Guo W, Huo M, et al. 2012. Regulation of inflammatory cytokines in lipopolysaccharidestimulated RAW 264.7 murine macrophage by 7-O-methyl-naringenin. Molecules 17: 3574-3585. https://doi.org/10.3390/molecules17033574
  13. Buchanan MM, Hutchinson M, Watkins LR, Yin H. 2010. Toll-like receptor 4 in CNS pathologies. J. Neurochem. 114: 13-27. https://doi.org/10.1111/j.1471-4159.2010.06736.x
  14. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, et al. 2003. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell. 12: 1413-1426. https://doi.org/10.1016/S1097-2765(03)00490-8
  15. Luyendyk JP, Schabbauer GA, Tencati M, Holscher T, Pawlinski R, Mackman N. 2008. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in monocytes/macrophages. J. Immunol. 180: 4218-4226. https://doi.org/10.4049/jimmunol.180.6.4218
  16. Cencic A, Chingwaru W. 2010. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2: 611-625. https://doi.org/10.3390/nu2060611
  17. Sadhukhan P, Saha S, Dutta S, Mahalanobish S, Sil PC. 2018. Nutraceuticals: An emerging therapeutic approach against the pathogenesis of Alzheimer's disease. Pharmacol. Res. 129: 100-114. https://doi.org/10.1016/j.phrs.2017.11.028
  18. Bogdan C. 2001. Nitric oxide and the immune response. Nat. Immunol. 2: 907-916. https://doi.org/10.1038/ni1001-907
  19. Fang ZJ, Zhang T, Chen SX, Wang YL, Zhou CX, Mo JX, et al. 2019. Cycloartane triterpenoids from Actaea vaginata with antiinflammatory effects in LPS-stimulated RAW264.7 macrophages. Phytochemistry 160: 1-10. https://doi.org/10.1016/j.phytochem.2019.01.003
  20. Jung S, Lee MS, Choi AJ, Kim CT, Kim Y. 2019. Anti-inflammatory effects of high hydrostatic pressure extract of mulberry (Morus alba) fruit on LPS-stimulated RAW264.7 Cells. Molecules 24: 1425. https://doi.org/10.3390/molecules24071425
  21. Lee J, Ha SJ, Lee HJ, Kim MJ, Kim JH, Kim YT, et al. 2016. Protective effect of Tremella fuciformis Berk extract on LPS-induced acute inflammation via inhibition of the NF-kappaB and MAPK pathways. Food Funct. 7: 3263-3272. https://doi.org/10.1039/C6FO00540C
  22. Song KM, Ha SJ, Lee JE, Kim SH, Kim YH, Kim Y, et al. 2015. High yield ultrasonication extraction method for Undaria pinnatifida sporophyll and its anti-inflammatory properties associated with AP-1 pathway suppression. Lwt-Food Sci. Technol. 64: 1315-1322. https://doi.org/10.1016/j.lwt.2015.07.055
  23. Beck PL, Li Y, Wong J, Chen CW, Keenan CM, Sharkey KA, et al. 2007. Inducible nitric oxide synthase from bone marrow-derived cells plays a critical role in regulating colonic inflammation. Gastroenterology 132: 1778-1790. https://doi.org/10.1053/j.gastro.2007.01.032
  24. D'Alessio FR, Tsushima K, Aggarwal NR, Mock JR, Eto Y, Garibaldi BT, et al. 2012. Resolution of experimental lung injury by monocyte-derived inducible nitric oxide synthase. J. Immunol. 189: 2234-2245. https://doi.org/10.4049/jimmunol.1102606
  25. Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. 2017. Nonsteroidal anti-inflammatory therapy: a journey toward safety. Med. Res. Rev. 37: 802-859. https://doi.org/10.1002/med.21424
  26. Jeong YE, Lee MY. 2018. Anti-inflammatory activity of populus deltoides leaf extract via modulating NF-kappaB and p38/JNK pathways. Int. J. Mol. Sci. 19: 3746. https://doi.org/10.3390/ijms19123746
  27. Park JY, Kwon YW, Lee SC, Park SD, Lee JH. 2017. Herbal formula SC-E1 suppresses lipopolysaccharide-stimulated inflammatory responses through activation of Nrf2/HO-1 signaling pathway in RAW 264.7 macrophages. BMC Complement. Altern. Med. 17(1): 374. https://doi.org/10.1186/s12906-017-1874-1
  28. Morgan MJ, Liu ZG. 2011. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 21: 103-115. https://doi.org/10.1038/cr.2010.178
  29. Hayden MS, Ghosh S. 2012. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26: 203-234. https://doi.org/10.1101/gad.183434.111
  30. Christian F, Smith EL, Carmody RJ. 2016. The regulation of NF-kappaB subunits by phosphorylation. Cells 5: 12. https://doi.org/10.3390/cells5010012
  31. Giridharan S, Srinivasan M. 2018. Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 11: 407-419. https://doi.org/10.2147/JIR.S140188
  32. Wuertz K, Vo N, Kletsas D, Boos N. 2012. Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-kappaB and MAP kinases. Eur. Cell Mater. 23: 103-120.
  33. Peroval MY, Boyd AC, Young JR, Smith AL. 2013. A critical role for MAPK signalling pathways in the transcriptional regulation of toll like receptors. PLoS One 8: e51243. https://doi.org/10.1371/journal.pone.0051243
  34. Ma JQ, Li Z, Xie WR, Liu CM, Liu SS. 2015. Quercetin protects mouse liver against CCl(4)-induced inflammation by the TLR2/4 and MAPK/NF-kappaB pathway. Int. Immunopharmacol. 28: 531-539. https://doi.org/10.1016/j.intimp.2015.06.036
  35. Wang XM, Lehky TJ, Brell JM, Dorsey SG. 2012. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 59: 3-9. https://doi.org/10.1016/j.cyto.2012.03.027
  36. Zhang JM, An J. 2007. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 45: 27-37. https://doi.org/10.1097/AIA.0b013e318034194e
  37. Chaudhry H, Zhou J, Zhong Y, Ali MM, McGuire F, Nagarkatti PS, et al. 2013. Role of cytokines as a double-edged sword in sepsis. In Vivo 27: 669-684.
  38. Shim DW, Han JW, Sun X, Jang CH, Koppula S, Kim TJ, et al. 2013. Lysimachia clethroides Duby extract attenuates inflammatory response in RAW264.7 macrophages stimulated with lipopolysaccharide and in acute lung injury mouse model. J. Ethnopharmacol. 150: 1007-1015. https://doi.org/10.1016/j.jep.2013.09.056

Cited by

  1. Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L’Hér. Extracts Obtained with Different Solvents vol.26, pp.7, 2020, https://doi.org/10.3390/molecules26071902
  2. Barringtonia augusta Kurz 추출물의 항염증 및 항산화 효능 평가 vol.53, pp.2, 2021, https://doi.org/10.9721/kjfst.2021.53.2.154
  3. Anti-Inflammatory and Antioxidant Effects of Soroseris hirsuta Extract by Regulating iNOS/NF-κB and NRF2/HO-1 Pathways in Murine Macrophage RAW 264.7 Cells vol.11, pp.10, 2020, https://doi.org/10.3390/app11104711
  4. Analysis of the Chemical, Antioxidant, and Anti-Inflammatory Properties of Pink Pepper (Schinus molle L.) vol.10, pp.7, 2021, https://doi.org/10.3390/antiox10071062