DOI QR코드

DOI QR Code

The Selection Effect of Native Gold and Magnetite by Microwave-nitric Acid Leaching and Magnetic/hydro Separation

마이크로웨이브-질산용출과자력/수력선별에의한자연금및자철석의선별효과

  • Lee, Jong-Ju (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 이종주 (조선대학교 에너지.자원공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Received : 2020.03.20
  • Accepted : 2020.04.16
  • Published : 2020.04.28

Abstract

This study aimed to recover native gold from the concentrate using microwave-nitric acid leaching and magnetic/hydro separation experiments. The insoluble-residue was filtered from leaching solution through microwave-nitric acid leaching experiment. As a result of the atomic absorption spectrometer(AAS) analysis of the filtered leaching solution, it was discovered that Au content was not eluted at all and it was observed from the back scattered electron(BSE) image that native gold was liberated in the insoluble-residue. When magnetic/hydro separation experiments were applied for the insoluble-residue, magnetic and non magnetic minerals were separtated from insoluble-residue. Magnetite was recovered from the magnetic minerals and as a result of applying the hydro separation experiment again for the non-magnetic mineral, native gold was recovered. The native gold was identified through the X-ray diffraction(XRD) analysis and BSE image.

본 연구는 마이크로웨이브-질산용출과 자력/수력선별을 이용하여 정광으로부터 자연 금을 회수하는 것을 목표로 하였다. 마이크로웨이브-질산용출실험을 통해 용출용액으로부터 불용성-잔류물을 여과하였다. 용출용액을 원자흡수분광기(AAS)로 분석한 결과 Au는 전혀 용출되지 않은 것을 그리고 불용성-잔류물을 후방산란전자영상(BSE)으로 관찰한 결과 자연 금이 단체분리된 것으로 확인되었다. 불용성-잔류물을 자력/수력선별 하여 자성광물과 비-자성광물로 선별하였다. 자성광물에서 자철석이 회수되었고, 비-자성광물을 다시 수력선별한 결과 자연 금이 회수되었다. 자연 금은 X선 회절 분석(XRD)과 BSE 영상에서 확인되었다.

Keywords

References

  1. Aydogan, S., Erdemoglu, M., Ucar, G. and Aras, A. (2007) Kinetics of galena dissolution in nitric acid solutions with hydrogen peroxide, Hydrometallurgy, v.88, p.52-57. https://doi.org/10.1016/j.hydromet.2007.03.005
  2. Bhattacharya, M. and Basak, T. (2016) A review on the susceptor assisted microwave processing of materials, Energy, v.97, p.306-338. https://doi.org/10.1016/j.energy.2015.11.034
  3. Cabri, L.J., Rudashevsky, N.S., Rudashevsky, V.N. and Gorkovetz, V.Y. (2008a) Study of native gold from the Luopensulo deposit(Kostomuksha area, karelia, Russia) using a combination of electric pulse disaggregation (EPD) and hydroseparation(HS), Minerals Engineering, v.21, p.463-470. https://doi.org/10.1016/j.mineng.2008.02.006
  4. Cabri, L.J., Rudashevsky, N.S., Rudashevsky, V.N. and Oberthur, T. (2008b) Electric-pulse disaggregation(Epd), hydroseparation(Hs) and their use in combination for mineral processing and advance characterization of ores, In Proceedings Canadian Mineral Processors, 40th Annual Meeting, Ottawa, p.211-235.
  5. Cho, K.H., Lee, J.J. and Park, C.Y. (2020) Liberation of gold using microwave-nitric acid leaching and separation-recovery of native gold by hydro-separation, Minerals, v.10, p.327(1-12). https://doi.org/10.3390/min10040327
  6. Dmitry, V., Irina, K., Alexander, A., Alika, V. and Dianchun, J. (2019) Magnetite and Carbon Extraction from Coal Fly Ash Using Magnetic Separation and Flotation Methods, Minerals, v.9, p.1-13. https://doi.org/10.3390/min9010001
  7. Gao, G., Li, D., Zhou, Y., Sun, X. and Sun, W. (2009) Kinetics of high-sulphur and high-arsenic refractory gold concentrate oxidation by dilute nitric acid under mild conditions, Minerals Engineering, v.22, p.111-115. https://doi.org/10.1016/j.mineng.2008.05.001
  8. Haque, K.E. (1999) Microwave energy for mineral treatment processes-a brief review, International Journal of Mineral Processing, v.57, p.1-24. https://doi.org/10.1016/S0301-7516(99)00009-5
  9. Hough, R.M., Noble, R.R.P. and Erich, M. (2011) Natural gold nanoparticles, Ore Geology Reviews, v.42, p.55-61. https://doi.org/10.1016/j.oregeorev.2011.07.003
  10. Ibrahim, T.M.M. and El-Hussaini, O.M. (2007) Production of anhydrite-gypsum and recovery of rare earths as a by-product, Hydrometallurgy, v.87, p.11-17. https://doi.org/10.1016/j.hydromet.2006.11.017
  11. Kadioglu, Y., Karaca, S. and Bayrakceken, S. (1995) Kinetics of pyrite oxidation in aqueous suspension by nitric acid, Fuel processing Technology, v.41, p.273-287. https://doi.org/10.1016/0378-3820(94)00101-X
  12. Kalinin, Y.A., Kovalev, K.R., Naumov, E.A. and Kirillov, M.V. (2009) Gold in the weathering crust at the Suzdal' deposit(Kazakhstan), Russian Geology and Geophysics, v.50, p.174-187. https://doi.org/10.1016/j.rgg.2008.09.002
  13. Kim, H.S., Myung, E.J. and Park, C.Y. (2019a) Removal of penalty from invisible gold concentrate using microwave-nitric acid leaching and its gold recovery by lead-fire assay, J. Korean Soc. Miner. Energy Resour. Eng., v.56, p.217-226. https://doi.org/10.32390/ksmer.2019.56.3.217
  14. Kim, H.S., Oyunbileg, P. and Park, C.Y. (2019b) A study on the removal of penalty elements and the improvement of gold contents from gold concentrate using microwave-nitric acid leaching, J. Miner. Soc. Korea, v.32, p.1-14. https://doi.org/10.9727/jmsk.2019.32.1.1
  15. Kirillov, M.V., Bortnikova, S.B. and gaskova, O.L. (2016) Authigenic gold formation in the cyanidation tailings of gold-arsenopyrite-quartz ore of Komsomolsk deposit(Kuznetaki Alatau, Russia), Environ Earth Sci., v.75, p.1050(1-11). https://doi.org/10.1007/s12665-016-5852-6
  16. Larizzatti, J.H., Oliveira, S.M.B. and Butt, C.R.M. (2008) Morphology and composition of gold in a lateritic profile, Fazenda Pison "Garimpo", Amazon, Brazil, South American Earth Sciences, v.25, p.359-376. https://doi.org/10.1016/j.jsames.2007.06.002
  17. Lee, J.J. and Park, C.Y. (2020) Observability of invisible gold using BSE image and gold recovery by microwave-nitric acid leaching, J. Korean Soc. Miner. Energy Resour. Eng., v.57, p.1-11. https://doi.org/10.32390/ksmer.2020.57.1.001
  18. Lee, J.J. and Park, C.Y. (2019) The recovery of invisible gold using filter paper, J. Korean Soc. Miner. Energy Resour. Eng., v.56, p.315-325. https://doi.org/10.32390/ksmer.2019.56.4.315
  19. Lee, J.J., Myung, E.J. and Park, C.Y. (2019a) The effective recovery of gold from the invisible gold concentrate using microwave-nitric acid leaching method, J. Miner. Soc. Korea, v.32, p.185-200. https://doi.org/10.9727/jmsk.2019.32.3.185
  20. Lee, J.J., On, H.S. and Park, C.Y. (2019b) Gold recovery from Geumsan concentrate using microwave-nitric acid leaching and lead-fire assay, J. Miner. Soc. Korea, v.32, p.113-126. https://doi.org/10.9727/jmsk.2019.32.2.113
  21. Levenspiel, O. (1999) Chemical reaction engineering, John Wiley & Sons, 668p.
  22. Li, Q., Zhang, Y., Liu, X., Xu, B., Yang, Y. and Jiang, T. (2017) Improvement of gold leaching from a refractory gold concentrate calcine by separate pretreatment of coarse and fine size fractions, Minerals, v.7, p.1-12. https://doi.org/10.3390/min7010001
  23. Makanza, A.T., Vermaak, M.K.G. and Davidtz, J.C. (2008) The flotation of auriferous pyrite with a mixture of collectors, International Journal of Mineral Processing, v.86, p.85-93. https://doi.org/10.1016/j.minpro.2007.11.004
  24. Michel, D. (1987) Concentration of gold in in situ laterites from Mato Grosso, Mineralium Deposita, v.22, p.185-189. https://doi.org/10.1007/BF00206608
  25. Oberthur, T., Melcher, F., Sitnikova, M., Pudashevsky, N.S., Rudashevsky, V.N., Cabri, L.J., Lodziak, L., Klosa, D. and Gast, L. (2008) Combination of novel mineralogical methods in the study of noble metal ores-focus on pristine(Bushveld, Great Dyke) and placer platinum mineralisation, Ninth International Congress for Applied Mineralogy, Brisbane, QLD, 8-10 September, 187-193.
  26. Oghbaei, M. and Mirzaee, O. (2010) Microwave versus conventional sintering: a review of fundamentals, advantages and applications, Journal of Alloys and Compounds, v.494, p.175-189. https://doi.org/10.1016/j.jallcom.2010.01.068
  27. Pickles, C.A. (2009) Microwave in extractive metallurgy: Part 2- A review of application, Mineral Engineering, v.22, p.1112-1118. https://doi.org/10.1016/j.mineng.2009.02.014
  28. Rees, K.L. and van Deventer, J.S.J. (2000) Preg-robbing phenomena in the cyanidation of sulphide gold ores, Hydrometallurgy, v.58, p.61-80. https://doi.org/10.1016/S0304-386X(00)00131-6
  29. Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R. (2005) Solubility of gold in arsenian pyrite, Geochimica et Cosmochimica Acta, v.69, p.2781-2796. https://doi.org/10.1016/j.gca.2005.01.011
  30. Vikentyev, I.V., Yudovskaya, M.A., Mokhov, A.V., Kerzin, A.L. and Tsepin, A.I. (2004) Gold and PGE in massive sulfide ore of the Uzelginsk deposit, southerna Urals, Russia, The Canadian Mineralogist, v.42, p.651-665. https://doi.org/10.2113/gscanmin.42.2.651